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PREFACE 

Real-time systems technology, traditionally developed for safety-critical systems, has 
recently been extended to support novel application domains, including multimedia 
systems, monitoring apparatuses, telecommunication networks, mobile robotics, vir- 
tual reality, and interactive computer games. Such systems are referred to as m f t  
real-time systems, because they are often characterized by a highly dynamic behavior 
and flexible timing requirements. In such systems, missing a deadline does not cause 
catastrophic consequences on the environment, but only a performance degradation, 
often evaluated through some quality of service parameter. 

Providing an appropriate support at the operating system level to such emerging ap- 
plications is not trivial. In fact, whereas general purpose operating systems are not 
predictable enough for guaranteeing the required performance, the classical hard real- 
time design paradigm, based on worst-case assumptions and static resource allocation, 
would be too inefficient in this context, causing a waste of the available resources and 
increasing the overall system cost. For this reason, new methodologies have been in- 
vestigated for achieving more flexibility in handling task sets with dynamic behavior, 
as well as higher efficiency in resource exploitation. 

This book illustrates the typical characteristics of soft real-time applications and presents 
some recent methodologies proposed in the literat~lre to support this kind of applica- 
tions. 

Chapter 1 introduces the basic terminology and concepts used in the book and clearly 
illustrates the main characteristics that distinguish soft real-time computing from other 
types of computation. 

Chapter 2 is devoted to overload management techniques, which are essential in dy- 
namic systems where the computational requirements are highly variable and cannot 
be predicted in advance. 

Chapter 3 introduces the concept of temporal protection, a mechanism for isolating the 
temporal behavior of a task to prevent reciprocal interference with the other system 
activities. 



. . . 
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Chapter 4 deals with the problem of executing several independent multi-thread appli- 
cations in the same machine, presenting some methodologies to partition the processor 
into several virtual slower processors, in such a way that each application can be inde- 
pendently guaranteed from each other. 

Chapter 5 presents a number of synchronization protocols for limiting blocking times 
when mutually exclusive resources are shared among hard and soft tasks. 

Chapter 6 describes resource reclaiming techniques, which enhance resource exploita- 
tion when the actual resource usage of a task is different than the amount allocated off 
line. These techniques basically provide a method for reassigning the unused resources 
to the most demanding tasks. 

Chapter 7 treats the issue of quality of service management. It is addressed through an 
adequate formulation that univocally maps subjective aspects (such as the perceived 
quality that may depend on the user) to objective values expressed by a real number. 

Chapter 8 presents some feedback-based approach to real-time scheduling, useful to 
adapt the behavior of a real-time system to the actual workload conditions, in highly 
dynamic environments. 

Chapter 9 addresses the problem of performing a probabilistic analysis of real-time 
task sets, with the aim of providing a relaxed form of guarantee for those real-time 
systems with highly variable execution behavior. The objective of the analysis is to 
derive for each task a probability to meet its deadline or, in general, to complete its 
execution within a given interval of time. 
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INTRODUCTION 

In this chapter we explain the reasons why soft real-time computing is being deeply in- 
vestigated d~lring the last years for supporting a set of applicationdomains for which the 
hard real-time approach is not suited. Examples of such application domains include 
multimedia systems, monitoring apparatuses, robotic systems, real-time graphics, in- 
teractive games, and virtual reality. 

To better understand the difference between classical hard real-time applications and 
soft real-time applications, we first introduce some basic terminology that will be used 
throughout the book, then we present the classical design approach used for hard real- 
time systems, and then describe the characteristics of some soft real-time application. 
Hence, we identify the major problems that a hard real-time approach can cause in these 
systems and finally we derives a set of feat~lres that a soft real-time system should have 
in order to provide efficient support for these kind of applications. 

1 .  BASIC TERMINOLOGY 

In the common sense, a real-time system is a system that reacts to an event within a 
limited amount of time. So, for example, in a web page reporting the state of a Formula 
1 race, we say that the race state is reported in real-time if the car positions are updated 
"as soon as" there is a change. In this particular case, the expression "as soon as" does 
not have a precise meaning and typically refers to intervals of a few seconds. 

When a computer is used to control a physical device (e.g., a mobile robot), the time 
needed by the processor to react to events in the environment may significantly affect 
the overall system's performance. In the example of a mobile robot system, a correct 
maneuver performed too late could cause serious problems to the system and/or the 



environment. For instance, if the robot is running at a certain speed and an obstacle 
is detected along the robot path, the action of pressing the brakes or changing the 
robot trajectory should be performed within a maximum delay (which depends on the 
obstacle distance and on the robot speed), otherwise the robot could not be able to 
avoid the obstacle, thus incurring in a crash. 

Keeping the previous example in mind, a real-time system can be more precisely 
defined as a computing system in which computational activities must be performed 
within predefined timing constraints. Hence, the performance of a real-time system 
depends not only on the functional correctness of the results of computations, but also 
on the time at which such results are produced. 

The word real indicates that the system time (that is, the time represented inside the 
computing system) should always be synchronized with the external time reference 
with which all time intervals in the environment are measured. 

1.1.1 TIMING PARAMETERS 

A real-time system is usually modeled as a set of concurrent tasks. Each task represents 
a computational activity that needs to be performed according to a set of constraints. 
The most significant timing parameters that are typically defined on a real-time com- 
putational activity are listed below. 

Release time 7 ,: is the time at which a task becomes ready for execution; it is 
also referred to as a r r i ~ d  time and denoted by a ,; 

Start time s,: is the time at which a task starts its execution for the first time; 

Computation time C, : is the time necessary to the processor for executing the 
task without interruption; 

Finishing time f , :  is the time at which a task finishes its execution; 

Response time R , :  is the time elapsed from the task release time and its finishing 
time (R, = f ,  - r,); 

Absolute deadline d,: is the time before which a task should be completed; 

Relative deadline D,: is the time, relative to the release time, before which a task 
should be completed ( D l  = d,  - r l  ); 



Figure 1.1 Typical timing parameters of a real-time task 

Such parameters are schematically illustrated in Figure 1.1, where the release time is 
represented by an up arrow and the absolute deadline is represented by a down arrow. 

Other parameters that are usually defined on a task are: 

w Slack time or Laxity: denotes the interval between the finishing time and the 
absolute deadline of a task (slack, = d l  - f,); it represents the maximum time a 
task can be delayed to still finish within its deadline; 

w Lateness L,: L,  = f ,  - d, represents the completion delay of a task with respect 
to its deadline; note that if a task completes before its deadline, its lateness is 
negative; 

w Tardiness or E.xceeding rime E, :  E, = n~ax(O.  L,)  is the time a task stays active 
after its deadline. 

If the same computational activity needs to be executed several times on different data, 
then a task is characterized as a sequence of multiple instances, or jobr. In general, 
a task r, is modeled as a (finite or infinite) stream of jobs, 7, ,, ( J  = 1 . 2 . .  . .), each 
characterized by a release time r ,  , , an execution time c ,  , , a finishing time f ,  , , and 
an absolute deadline d ,  , . 

1.1.2 TYPICAL TASK MODELS 

Depending on the timing requirements defined on a computation, tasks are classified 
into four basic categories: hard, firm, soft, and non real time. 



A task r, is said to be /tar-d if all its jobs have to complete within their deadline 
( V j  f , . ,  < d,  J), otherwise a critical faillre may occur in the system. 

A task is said to b e j m  if only a limited number of jobs are allowed to miss their 
deadline. In [KS95], Koren and Shasha defined a firm task model in which only one 
job every S is allowed to miss its deadline. When a job misses its deadline, it is 
aborted and the next S - 1 jobs must be guaranteed to complete within their deadlines. 
A slightly different firm model, proposed by Hamdaoui and Ramanathan in [HR95], 
allows specifying tasks in which at least k jobs every i n  must meet their deadlines. 

A task is said to be sqff if the value of the produced result gracefully degrades with 
its response time. For some applications, there is no deadline associated with soft 
computations. In this case, the objective of the system is to reduce their response times 
as much as possible. In other cases, a soft deadline can be associated with each job, 
meaning that thejob should complete before its deadline to achieve its best performance. 
However, if a soft deadline is missed, the system keeps working at a degraded level 
of performance. To precisely evaluate the performance degradation caused by a soft 
deadline miss, a performance value function can be associated with each soft task, as 
described in Chapter 2. 

Finally, a task is said to be norl r e d  time if the value of the produced result does not 
depend on the completion time of its computation. 

1.1.3 ACTIVATION MODES 

In a computer controlled system, a computational activity can either be activated by a 
timer at predefined time instants (time-triggered activation) or by the occurrence of a 
specific event (event-triggered activation). 

When jobs activations are triggered by time and are separated by a fixed interval of time, 
the task is said to be periodic. More precisely, a periodic task 7, is a time-triggered 
task in which the first job 7, 1 is activated at time a,, called the task phase, and each 
subsequent job r, ,+I is activated at time r ,  ,+I = 7 , , + T I ,  where T, is the task period. 
If D, is the relative deadline associated with each job, the absolute deadline of job 7 ,  , 
can be computed as: 

r ,  3 = a, + ( J I  - 1)T, 
d l  1  = r.13 + Dl 

If job activation times are not regular, the task is said to be apenodlc. More precisely, 
an aperiodic task r, is a task in which the activation time of job 7 ,  ~ + 1  is greater than 
or equal to that of its previous job 7 ,  A .  That is, r ,  ~ + 1  > r ,  A .  



If there is a minimum separation time between successive jobs of an aperiodic task, 
the task is said to be sporadic. More precisely, a sporadic task 7 ,  is a task in which 
the difference between the activation times of any two adjacent jobs r, A and 7, ~ + 1  is 
greater than or equal to T,. That is, ?-, > ?-, A + T,. The T, parameter is called the 
?izi~~iwiz~wi interarrival time. 

1.1.4 PROCESSOR WORKLOAD AND BANDWIDTH 

For a general purpose computing system, the processor workload depends on the 
amount of computation required in a unit of time. In a system characterized by aperi- 
odic tasks, the average load p i s  computed as the product of the average computation 
time Crequested by tasks and the average arrival rate A: 

- 
p = CX. 

In a real-time system, however, the processor load also depends on tasks' timing con- 
straints. The same set of tasks with given computation requirements and arrival patterns 
will cause a higher load if it has to be executed with more stringent timing constraints. 

To measure the load of a real-time system in a given interval of time, Baruah, Howell 
and Rosier [BMR90] introduced the concept of processor der~zarzd, defined as follows: 

Definition 1.1 The processor cler~zand y( t l .  t 2 )  in an intenal of firne [ t l ,  t 2 ]  ia the 
arnomf qf conlprtafion that lzaa been releaaed at or ufter t  1 and rmsf be con~plefecl 
~vithin t2. 

Hence, the processor demand g ,  ( t l  , t n )  of task r, is equal to the computation time 
requested by those jobs whose arrival times and deadlines are within [t 1 .  t n ] .  That is: 

For example, given the set of jobs illustrated in Figure 1.2, the processor demand in 
the interval [ t , ,  tb]  is given by the sum of computation times denoted with dark gray, 
that is, those jobs that arrived at or after t ,  and have deadlines at or before tb .  

The total processor demand g(t 1. t 2 )  of a task set in an interval of time [t 1, t2]  is equal 
to the sum of the individual demands of each task. That is, 



Figure 1.2 Processor dernaricl for a set of jobs 

Then, the processor workload in an interval [t 1 ,  t 2 ]  can be defined as the ratio of the 
processor demand in that interval and the length of the interval: 

In the special case of a periodic hard task, the load produced by the task is also called 
the task uti1i:ation (C , )  and can be computed as the ratio between the task worst-case 
computation time C ,  and its period T,: 

Then, the total processor utilization is defined as the sum of the individual tasks' 
utilizations: 

n 

The utilization factor L, of a periodic task r, basically represents the computational 
bandwidth requested by the task to the processor (assuming that each job will execute 
for its worst-case execution time). The concept of requested bandwidth can also be 
generalized to non periodic tasks as follows. 

Definition 1.2 A tark 7, is said to requert a band\~idtli C ,  $ in a q  interval of time 
[t l .  t l ] ,  itr corizyiitatior~al dernandg, ( t l .  t r )  Ilel,er erceeds (t2 - t l )C, ,  and there erirtr 
an mfewal  [ to ,  tb] silch rlzar y, (t,. t h )  = ( th  - ta)L;. 

1.1.5 OVERLOAD AND OVERRUN 

A system is said to be in overload condition when the computational demand of the 
task set exceeds the available processing time, that is, when there exists an interval of 
time [t,, t b ]  such that g(t,. t b )  > ( tb  - to ) .  In such a situation, computational activities 



start to accumulate in system's queues (which tend to become longer and longer, if the 
overload persists), and tasks response times tend to increase indefinitely. When tasks 
have timing constraints, an overload condition implies that one or more tasks will miss 
the deadline (assuming that all tasks execute for their expected computation time). 

For a set of periodic tasks, the overload condition is reached when the processor uti- 
lization Cp = x:kl C, exceeds one. Notice, however, that, depending on the adopted 
scheduling algorithm, tasks may also miss deadlines when the processor is not over- 
loaded (as in the case of the Rate Monotonic algorithm, that has a schedulability bound 
less than one [LL73]). 

While the overload is a condition related to the processor, the overrun is a condition 
related to a single task. 

A task is said to overrun when there exists an interval of time in which its computational 
demand g,  exceeds its expected bandwidth C,. This condition may occur either because 
jobs arrive more frequently than expected (activation ovem~n) ,  or because computation 
times exceed their expected value (e.xecufion overr~rn). Notice that a task overrun does 
not necessarily cause an overload. 

1.2 FROM HARD TO SOFT REAL-TIME SYSTEMS 

Real-time systems technology, traditionally used for developing large systems with 
safety-critical requirements, has recently been extended to support novel application 
domains, often characterized by less stringent timing requirements, scarce resources, 
and more dynamic behavior. To provide appropriate support to such emerging ap- 
plications, new methodologies have been investigated for achieving more flexibility 
in handling task sets with dynamic behavior, as well as higher efficiency in resource 
exploitation. 

In this section we describe the typical characteristics of hard and soft real-time appli- 
cations, and present some concrete example to illustrate their difference in terms of 
application requirements and execution behavior. 

1.2.1 CLASSICAL HARD REAL-TIME APPLICATIONS 

Real-time computing technology has been primarily developed to support safety- 
critical systems, such as military control systems, avionic devices, and nuclear power 
plants. However, it has been also applied to industrial systems that have to guarantee a 



certain performance requirements with a limited degree of tolerance. In these systems, 
also called /tar-cl real-time systems, most computational activities are characterized by 
stringent timing requirements, that have to be met in all operating conditions in order 
to guarantee the correct system behavior. In such a context, missing a single deadline 
is not tolerated, either because it could have catastrophic effects on the controlled en- 
vironment, or because it could jeopardize the guarantee of some stringent performance 
requirements. 

For example, a defense missile could miss its target if launched a few milliseconds 
before or after the correct time. Similarly, a control system could become unstable if 
the control commands are not delivered at a given rate. For this reason, in such systems. 
computational activities are modeled as tasks with hard deadlines, that must be met in 
all predicted circumstances. A task finishing after its deadline is considered not only 
late, but also wrong, since it could jeopardize the whole system behavior. 

In order to guarantee a given performance, hard real-time systems are designed under 
worst-case scenarios, derived by making pessimistic assumptions on system behav- 
ior and on the environment. Moreover, to avoid unpredictable delays due to resource 
contention, all resources are statically allocated to tasks based on their maximum re- 
quirements. Such a design approach allows system designers to perform an off-line 
analysis to guarantee that the system is able to achieve a minimum desired performance 
in all operating conditions that have been predicted in advance. 

A crucial phase in performing the off-line guarantee is the evaluation of the worst-case 
computation times (WCETs) of all computational activities. This can be done either 
experimentally, by measuring the maximum execution time of each task over a large 
amount of input data, or analytically, by analyzing the source code, identifying the 
longest path, and computing the time needed to execute it on the specific processor 
platform. Both methods are not precise. In fact, the first experimental approach fails 
in that only a limited number of input data can be generated during testing, hence the 
worst-case execution may not be found. On the other hand, the analytical approach has 
to make so many assumptions on the low-level mechanisms present in the computer 
architecture, that the estimation becomes too pessimistic. In fact, in modern computer 
architectures, the execution time of an instruction depends on several factors, such as 
theprefetch queue, the DMA, the cache size, and so on. The effects of such mechanisms 
on task execution are difficult to predict, because they also depends on the previous 
computation and on the actual data. As a consequence, deriving a precise estimation 
of the WCET is very difficult (if not impossible). The WCET estimations used in 
practice are not precise and are affected by large errors (typically more than 20%). 
This means that to have an absolute off-line guarantee, all tasks execution times have 
to be overestimated. 



Once all computation times are evaluated, the feasibility of the system can be analyzed 
using several guarantee algorithms proposed in the literature for different scheduling 
algorithms and task models (see [But971 for a survey of guarantee tests). To simplify 
the guarantee test and cope with peak load conditions, the schedulability analysis of a 
task set is also performed under pessimistic assumptions. For example, a set of periodic 
tasks is typically analyzed under the following assumptions: 

All tarks start at the rarrie time. This assumption simplifies the analysis because 
it has been shown (both under fixed priorities [LL73] and dynamic priorities 
[BMR90]) that synchronous activations generate the highest workload. Hence, if 
the system is schedulable when tasks are synchronous, it is also schedulable when 
they have different activation phases. 

Job irlterarri~nl time ir corutarltfor each tark. This is assumption can be enforced 
by a time-triggered activation mechanism, so making tasks purely periodic. How- 
ever, there are cases in which the activation of a task depends on the occurrence 
of an external event (such as the arrival of a message from the network) whose 
periodicity cannot be precisely predicted. 

All jobs of a task lzave flze same con~pfatiorz finze. This assumption can be 
reasonable for tasks having a very simple structure (no branches or loops). In 
general, however, tasks have loops and branches inside their code, which depend 
on specific data that cannot be predicted in advance. Hence, the computation 
time of a job, is highly variable. As a consequence, modeling a task with a fixed 
computation time equal to the maximum execution time of all its jobs leads to a 
very pessimistic estimate, which causes a waste of the processing resources. 

The consequence of such a worst-case design methodology is that high predictability 
is achieved at the price of a very low efficiency in resource utilization. Low efficiency 
also means high cost, since, in order to prevent deadline misses during sporadic peak 
load conditions, more resources (both in terms of memory and computational power) 
need to be statically allocated to tasks for coping with the maximum requirements, 
even though the average requirement of the system is much lower. 

In conclusion, if the real-time application consists of tasks with a simple programming 
structure that can be modeled by a few fixed parameters, then classical schedulability 
analysis can be effectively used to provide an off-line guarantee under all anticipated 
scenarios. However, when tasks have a more complex and dynamic behavior, the 
classical hard real-time design paradigm becomes highly inefficient and less suited for 
developing embedded systems with scarce resources. 



frames 

Figure 1.3 Decoding times for a sequence of flames taken from Stur IVc~rr 

1.2.2 NOVEL APPLICATION DOMAINS 

In the last years, emerging time-sensitive applications brought real-time computing into 
several new different domains, including multimedia systems, monitoring apparatuses, 
telecommunication networks, mobile robotics, virtual reality, and interactive computer 
games. In such systems. also called sqff real-time systems, application tasks are allowed 
to have less stringent timing constraints, because missing a deadline does not cause 
catastrophic consequences on the environment, but only a performance degradation, 
often evaluated through some quality of service (QoS) parameter. 

In addition, often, such systems operate in more dynamic environments, where tasks 
can be created or killed at runtime, or task parameters can change from one job to the 
other. 

There are many soft real-time applications in which the worst-case duration of some 
tasks is rare but much longer than the average case. In multimedia systems, for instance, 
the time for decoding a video frame in MPEGplayers can vary significantly as a function 
of the data contained in the frames. Fig~lre 1.3 shows the decoding times of frames in 
a specific sequence of the Star War5 movie. 

As another example of task with variable computation time, consider a visual tracking 
system where, in order to increase responsiveness, the moving target is searched in a 



small window centered in a predicted position, rather than in the entire visual field. 
If the target is not found in the predicted area, the search has to be performed in a 
larger region until, eventually, the entire visual field is scanned in the worst-case. If 
the system is well designed, the target is found very quickly in the predicted area most 
of the times. Thus, the worst-case situation is very rare, but very expensive in terms of 
computational resources (computation time increases quadratically as a function of the 
number of trials). In this case, an off-line guarantee based on WCETs would drastically 
reduce the frequency of the tracking task, causing a severe performance degradation 
with respect to a soft guarantee based on the average execution time. 

Just to give a concrete example, consider a videocamera producing images with 5 12x5 12 
pixels, where the target is a round spot, with a 30 pixels diameter, moving inside the 
visual field. In this scenario, if L7, is the processor utilization required to track the target 
in a small window of 64x64 pixels at a rate T,, a worst-case guarantee would require 
the tracking task to run 64 times slower in order to demand the same bandwidth in the 
entire visual field (which is 64 times bigger). Clearly, in this application, it is more 
convenient to perform a less pessimistic guarantee in order to increase the tracking rate 
and accept some sporadic overrun as a natural system behavior. 

In other situations, periodic tasks could be executed at different rates in different op- 
erating conditions. For example, in a flight control system, the sampling rate of the 
altimeters is a function of the current altitude of the aircraft: the lower the altitude, the 
higher the sampling frequency. A similar need arises in robotic applications in which 
robots have to work in unknown environments, where trajectories are planned based on 
the current sensory information. If a robot is equipped with proximity sensors, in order 
to maintain a desired performance, the acquisition rate of the sensors must increase 
whenever the robot is approaching an obstacle. Another example of computation with 
variable activation rate is engine control, where computation is triggered by the shaft 
rotation angle, hence task activation is a function of the motor speed. 

In all these examples, task parameters are not fixed, as typically considered in a hard 
task, but vary from a job to the other, depending on the data to be processed. 

The problem becomes even more significant when the real-time software runs on top of 
modern hardware platforms, which include low-level mechanisms such as pipelining, 
prefetching, caching, or DMA. In fact, although these mechanisms improvethe average 
behavior of tasks, they worsen the worst case, so making much more difficult to provide 
precise estimates the of worst-case computation times. 

To provide a more precise information about the behavior of such dynamic compu- 
tational activities, one could describe a parameter through a probability distribution 
derived by experimental data. Figure 1.4 illustrates the probability distribution func- 
tion of job computation times for the process illustrated in Figure 1.3. 
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Figure 1.4 Distribution of joh computation times for the frame sequence shown in Figure 
1.3. 

1.3 PROVIDING SUPPORT FOR SOFT REAL-TIME 
SYSTEMS 

Considering the characteristics of the applications describes above, what is the most 
appropriate way to provide a predictable, as well as efficient, support for them? Can 
classical (non real-time) operating systems, such as Windows or Linux, be used to 
develop soft real-time applications'? What are their limitations? Can hard real-time 
systems provide a sufficient support for soft real-time computing'? If not, what are the 
desired features that a real-time kernel should have for this purpose? 

In this section we explain why classical general purpose operating systems are not 
suited for supporting real-time applications. We also explain the limitations of the hard 
real-time systems and finally we conclude the section with a list of desired features 
that should be included in a kernel for providing efficient support for soft real-time 
applications. 



1.3.1 PROBLEMS WITH NON REAL-TIME SYSTEMS 

The fact that a soft real-time application may tolerate a certain degree of performance 
degradation does not mean that timing constraints can be completely ignored. For 
example, in a multimedia application, a quality of service level needs to be enforced 
on the computational tasks to satisfy a desired performance requirement. If too many 
deadlines are missed, there is no way to keep the system performance above a certain 
threshold. 

Unfortunately, classical general purpose operating systems, such as Windows or Linux, 
are not suited for running real-time applications, because they include several internal 
mechanisms that introduce unbounded delays and cause a high level of unpredictability. 

First of all, they do not provide support for controlling explicit timing constraints. 
System timers are available at a relatively low resolution, and the only kernel service 
for handling time is given by the delay() primitive, which suspends the calling tasks for 
a given interval of time. The problem with the delay primitive, however, is that, if a task 
requires to be suspended for an interval of time equal to A, the system only guarantees 
that the calling task will be delayed at least by A. When using shared resources, the 
delay primitive can be very unpredictable, as shown in the example illustrated in Figure 
1.5. Here, although in normal conditions (a) task 7 1  has a slack equal to 4 units of time, 
a delay of 2 time units causes the task to miss its deadline (b). 

Much longer and unpredictable delays can be introduced d~lring task synchronization, 
if classical semaphores are used to enforce mutual exclusion in accessing shared re- 
sources. For example, consider two tasks, r ,  and ~ b ,  having priorities P, > Pb, that 
share a common resource R protected by a semaphore. If . ~ r ,  is activated first and is 
preempted by r, inside its critical section, then r, is blocked on the semaphore to 
preserve data consistency in the shared resource. In the absence of other activities, we 
can clearly see that the maximum blocking time experienced by r, on the semaphore 
is equal to the worst-case duration of the critical section executed by rb. However, 
if other tasks are running in the system, a third task, r,, having intermediate priority 
(Pb < PC < P,), may preempt Q while r, is waiting for the resource, so prolonging 
the blocking time of r, for its entire execution. This phenomenon, known as ayriorih 
inversion [SRL90], is illustrated in Fig~lre 1.6. 

In general, if we cannot limit the number of intermediate priority tasks that can run 
while r, is waiting for the resource, the blocking time of 7 ,  cannot be bounded,prevent- 
ing any performance guarantee on its execution. The priority inversion phenomenon 
illustrated above can be solved using specific concurrency control protocols when ac- 
cessing shared resources, like the Priorih Inherifance Profocol, the Priorig Ceiling 
Protocol [SRL90], or the Stack Resoillre Policy [Bak91]. However, unfortunately, 
these protocols are not yet available in all general purpose operating systems. 
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Figure 1.5 Scheduling anomaly caused by the d e l a ~ 0  primniti~e: although 3 has a slack 
equal to 3 units of time (a). a delay(2) causes the task to miss its deadline (b). 
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Figure 1.6 The priority in\-ersion phenomenon. In case (a) T, is blocked for at most the 
duration of the critical section of rh .  In case (b) T, is also delayed by the entire execution 
of T,, having intermediate priority. 



Figure 1.7 Effects of an execution overrun. In norlnal conditions (a) all tasks execute 
within their deadlines: hut a sequence of overruns in q and 7 2  may preLent 7 3  to execute 
(b). 

Another negative phenomenon that frequently occurs in general purpose operating 
systems is a high interference among task executions. Since there is not explicit control 
on the amount of time each task actually executes on the processor, a high priority task 
can basically steal as much time as it can to a lower priority computation. When 
tasks have a highly dynamic behavior, the consequences of the interference on task 
executions are very difficult to predict, causing a significant performance degradation 
in the system. In other words, in the absence of specific protection mechanisms in the 
kernel, an execution overrun occurring in a high priority task may cause very negative 
effects on several other tasks having lower priority. The problem is illustrated in Figure 
1.7, where three periodic tasks, with periods T 1  = 6, T2 = 9 ,  T3 = 18, and execution 
times C1 = 3, C2 = 2 ,  C3 = 2, are scheduled with the Rate Monotonic algorithm. 
As we can see, in normal conditions (Figure 1.7a) the task set is schedulable, however 
some execution overruns in rl and 7 2  may prevent r3 to execute (Figure 1.7b). 



The problem illustrated above becomes more serious in the presence of permanent 
overload conditions, occurring for example when new tasks are activated and the actual 
processor utilization is greater than one. 

When using non real-time systems, several kernel mechanisms can cause negative 
effects on real-time computations. For example, typical message passing primitives 
(like ~ e r d  and r-ecehv) available in kernels for intertask communication adopt a blocking 
semantics when receiving a message from an empty queue or sending a message into 
a full queue. If the blocking time cannot be bounded, the delay introduced in task 
executions can be very high, preventing any performance guarantee. Moreover, a 
blocking semantics also prevents communication among periodic tasks having different 
frequencies. 

Finally, also the interrupt mechanism, as implemented in general purpose operating 
systems, contributes to decrease the predictability of the system. In fact, in such 
systems, device drivers always execute with a priority higher than those assigned to 
application tasks, preempting the running task at any time. Hence, a bursty sequence 
of interrupts may introduce arbitrary long delays in the running tasks, causing a severe 
performance degradation. 

1.3.2 PROBLEMS WITH THE HARD REAL-TIME 
APPROACH 

In principle, if a set of tasks with hard timing constraints can be feasibly scheduled 
by a hard real-time kernel, it can also be feasibly scheduled if the same constraints 
are considered to be soft. However, there are a number of problems to be taken into 
account when using a hard real-time design approach for supporting a soft real-time 
application. 

First of all, as we already mentioned above, the use of worst-case assumptions would 
cause a waste of resources, which would be underutilized for most of the time, just to 
cope with some sporadic peak load condition. For applications with heavy computa- 
tional load (e.g., graphical activities), such a waste would imply a severe performance 
degradation or a significant increase of the system cost. Fig~lre 1.Sa shows that, when- 
ever the load has large variations, keeping the load peaks always below one causes the 
average load to be very small (low efficiency). On the other hand, Figure 1.Sb shows 
that efficiency can only be increased at the cost of accepting some transient overload, 
by allowing some peak load to exceed one, thus missing some deadlines. 
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Figure 1.8 Two different load conditions: an underloaded system with low ax-erage re- 
source Llsage (a), and a system \+it11 transient o~er loads  but high average resource usage 
(h). 

Another problem with the hard real-time approach is that, in many practical cases, a 
precise estimation of WCETs is very difficult to achieve. In fact, several low level mech- 
anisms present in modern computer architectures (such as interrupts, DMA, pipelining, 
caching, and prefetching) introduce a non deterministic behavior in tasks' execution, 
whose duration cannot be predicted in advance. 

Even though a precise WCET estimation could be derived for each task, a worst-case 
feasibility analysis would be very inefficient when task execution times have a high 
variance. In this case, a classical off-line hard guarantee would waste the system's 
computational resources for preserving the task set feasibility under sporadic peak 
load situations, even though the average workload is much lower. Such a waste of 



Table 1.1 Task set parameters. 

resources (which increases the overall system's cost) can be justified for very critical 
applications (e.g., military defense systems or safety critical space missions), in which 
a single deadline miss may cause catastrophic consequences. However, it does not 
represent a good solution for those applications (the majority) in which several deadline 
misses can be tolerated by the system, as long as the average task rates are guaranteed 
off line. 

On the other hand, uncontrolled overruns are very dangerous if not properly handled, 
since they may heavily interfere with the execution of other tasks, which could be 
more critical. Consider for example the task set given in Table 1.1, where two tasks, 
71 and 7 2 ,  have a constant execution time, whereas 7 3  has an average computation 
time (C:L" 3) much lower than its worst-case value (C;'" = 10). Here, if the 
schedulability analysis is performed using the average computation time C y' ', the total 
processor utilization becomes 0.92, meaning that the system is not overloaded; however, 
under the Earliest Deadline First (EDF) algorithm [LL73] the tasks can experience long 
delays during overruns, as illustrated in Figure 1.9. Similar examples can easily be 
found also under fixed priority assignments (e.g., under the Rate Monotonic algorithm 
[LL73]), when overruns occur in the high priority tasks (see for example the case 
illustrated 

1 

3 

T 3 

in Figure 1.7). 

Figure 1.9 Negatix-e effects of uncontrollecl ox-erruns under EDF. 



To prevent an overrun to introduce unbounded delays on tasks' execution, the system 
could either decide to abort the current instance of the task experiencing the overrun 
or let it continue with a lower priority. The first solution is not safe, because the 
instance could be in a critical section when aborted, thus leaving a shared resource with 
inconsistent data (very dangerous). The second solution is much more flexible, since 
the degree of interference caused by the overrun on the other tasks can be tuned acting 
on the priority assigned to the "faulty" task for executing the remaining computation. 

A general technique for limiting the effects of overruns is based on a resource reserva- 
tion approach [MST94b, TDS+95, Abe981, according to which each task is assigned 
(off line) a fraction of the available resources and is handled by a dedicated server, which 
prevents the served task from demanding more than the reserved amount. Although 
such a method is essential for achieving predictability in the presence of tasks with 
variable execution times, the overall system's performance becomes quite dependent 
from a correct resource allocation. For example, if the CPU bandwidth allocated to a 
task is much less than its average requested value, the task may slow down too much, 
degrading the system's performance. On the other hand, if the allocated bandwidth is 
much greater than the actual needs, the system will run with low efficiency, wasting 
the available resources. 

1.3.3 DESIRED FEATURES 

From the problems illustrated in the previous sections, we can derive a set of ideal fea- 
tures that a real-time kernel should have to efficiently support soft real-time applications 
while guaranteeing a certain degree of performance. They are listed below. 

w Overload management. Whenever the total computational load exceeds the 
processor capacity, the systems should properly decrease the demand of the task 
set to avoid uncontrolled performance degradation. 

w Temporal isolation. The temporal behavior of a computational activity should 
not depend on the execution characteristics of other activities, but only on the 
fraction of processor (CPU bandwidth) that has been allocated to it. Whenever a 
job executes more than expected, or a sequence of jobs arrives more frequently 
than predicted, only the corresponding task should be delayed, avoiding reciprocal 
task interference. 

Bounded priority inversion. When tasks interact through shared resources, the 
maximum blocking time caused by mutual exclusion should be bounded by the du- 
ration of one or a few critical sections, preventing other tasks to increase blocking 
delays with their execution. 



Aperiodic task handling. Asynchronous arrival of aperiodic events should be 
handled in such a way that the performance of periodic tasks is guaranteed off-line, 
and aperiodic responsiveness is maximized. 

w Resource reclaiming. Any spare time saved by early completions should be 
exploited for increasing aperiodic responsiveness or coping with transient overload 
conditions. 

w Adaptation. For real-time systems working in very dynamic environments, any 
change in the application behavior should be detected and cause a system adapta- 
tion. 

Most of the features outlined above are described in detail in the remaining chapters of 
this book. Aperiodic task scheduling is not treated in detail since it has been already 
discussed in [But971 in the context of hard real-time systems. 



OVERLOAD MANAGEMENT 

2.1 INTRODUCTION 

A system is said to be in overload when the computational demand of the task set 
exceeds the available processing time. In a real-time system, an overload condition 
causes one or more tasks to miss their deadline and, if not properly handled, it may 
cause abrupt degradations of system performance. 

Even when the system is properly designed, an overload can occur for different reasons, 
such as a new task activation, a system mode change, the simultaneous arrival of asyn- 
chronous events, a fault in a peripheral device, or the execution of system exceptions. 

If the operating system is not conceived to handle overloads, the effect of a transient 
overload can be catastrophic. There are cases in which the arrival of a new task can 
cause all the previous tasks to miss their deadlines. Such an undesirable phenomenon, 
called the Domino effect, is depicted in Figure 2.1. 

Figure 2. la shows a feasible schedule of a task set executed under EDF. However, if at 
time to task 7 0  is executed, all the previous tasks miss their deadlines (see Figure 2. lb). 
In general, under EDF, accepting a new task with deadline d ' causes all tasks with 
deadline longer than d" to be delayed. Similarly, under fixed priority scheduling, the 
activation of a task 7, with priority P, delays all tasks with lower priority. In order 
to avoid domino effects, the operating system and the scheduling algorithm must be 
explicitly designed to handle transient overloads in a controlled fashion, so that the 
damage due to a deadline miss can be minimized. 

In the real-time literature, several scheduling algorithms have been proposed to deal 
with overloads. In 1984, Ramamritham and Stankovic [RS84] usedEDF to dynamically 
guarantee incoming work via on-line planning, and, if a newly arriving task could not 



Figure 2.1 a. Feasible scheclule nit11 Earliest Deaclline First. in normal load conclition b. 
O ~ e ~ l o a d  \\ith domino effect due to the arr i~al  of task .ro 

be guaranteed, the task was either dropped or distributed scheduling was attempted. 
The dynamic guarantee performed in this approach had the effect of avoiding the 
catastrophic effects of overload on EDF. 

In 1986, Locke [Loc86] developed an algorithm that makes a best effort at scheduling 
tasks based on earliest deadline with a rejection policy based on removing tasks with 
the minimum value density. He also suggested that removed tasks remain in the system 
until their deadline has passed. The algorithm computes the variance of the total slack 
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time in order to find the probability that the available slack time is less than zero. The 
calculated probability is used to detect a system overload. If it is less than the user 
prespecified threshold, the algorithm removes the tasks in increasing value density 
order. 

In Biyabani et. al. [BSR88] the previous work of Ramamritham and Stankovic was 
extended to tasks with different values, and various policies were studied to decide 
which tasks should be dropped when a newly arriving task could not be guaranteed. This 
work used values of tasks such as in Locke's work but used an exact characterization of 
the first overload point rather than a probabilistic estimate that overload might occur. 

Haritsa, Livny, and Carey [HLC91] presented the use of a feedback controlled EDF 
algorithm for use in real-time database systems. The purpose of their work was to obtain 
good average performance for transactions even in overload. Since they were working 
in a database environment, they assumed no knowledge of transaction characteristics, 
and they considered tasks with soft deadlines that are not guaranteed. 

In real-time Mach [TWW87] tasks were ordered by EDF and overload was predicted 
using a statistical guess. If overload was predicted, tasks with least value were dropped. 

Other general work on overload in real-time systems has also been done. For exam- 
ple, Sha [SLR88] showed that the Rate-Monotonic algorithm has poor properties in 
overload. Thambidurai and Trivedi [TT89] studied transient overloads in fault-tolerant 
real-time systems, building and analyzing a stochastic model for such systems. How- 
ever, they provided no details on the scheduling algorithm itself. Schwan and Zhou 
[SZ92] did on-line guarantees based on keeping a slot list and searching for free-time 
intervals between slots. Once schedulability is determined in this fashion, tasks are 
actually dispatched using EDF. If a new task cannot be guaranteed, it is discarded. 

Zlokapa, Stankovic, and Ramamritham [Zlo93] proposed an approach called ,t<ell- 
time sclzedz~li~ig, which focuses on reducing the guarantee overhead in heavily loaded 
systems by delaying the guarantee. Various properties of the approach were developed 
via queueing theoretic arguments, and the results were a multilevel queue (based on an 
analytical derivation), similar to that found in [HLC91] (based on simulation). 

More recent approaches will be described in the following sections. Before presenting 
specific methods and theoretical results on overload, the concept of overload, and, in 
general, the meaning of computational load for real-time systems is defined in the next 
section. 



2.2 LOAD DEFINITIONS 

In Chapter 1, the processor workload in an interval of time [t 1, t s ]  has been defined as 
the ratio of the processor demand in that interval and the length of the interval: 

Hence, the system loadin a given schedule is given by 

Computing the load using the previous definition, however, may not be practical, be- 
cause the number of intervals [t 1, tq]  can be very large. When the task set consists only 
of aperiodic activities, then a more effective method is to compute the instantaneous 
load p(t),  originally introduced by Buttazzo and Stankovic in [BS95]. According to 
this method, the load is computed at time t ,  based on the current set of active aperiodic 
tasks, each characterized by a remaining computation time c ,  ( t )  and a deadline d l .  In 
particular, the load at time t  is computed as 

where 

Figure 2.2a shows an example of load calculation for a set of three real-time aperiodic 
tasks. At time t  = 6, when rl arrives, the loading factor p ,  ( t )  of each task is shown on 
the right of the timeline, so the instantaneous load at time 6 is p(6) = 0.833. Figure2.2b 
shows the load as a function of time. 

For a set of synchronous periodic tasks with deadlines less than or equal to periods, the 
processor demand can be computed from time t  = 0 in an interval of length L as 

Hence, the total processor workload can be computed as 

It is worth noticing that Baruah et al. [BMR90] showed that the maximum can be 
computed for L equal to task deadlines, up to a value L ,,, , = min(H. L*), where H 
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Figure 2.2 a. Load calculation for t = 6 in a set of three real-time tasks. h. Load as a 
function of time. 

is the hyperperiod (i.e., the minimum common multiple of task periods) and 

The methods proposed in the literature for dealing with permanent overload conditions 
can be grouped in two main categories: 

I .  Admission control. According to this method, each task is assigned an impor- 
tance value. Then, in the presence of an overload, the least important tasks are 
rejected to keep the load under a desired threshold, whereas the other tasks receive 
full service. 

2. Performance degradation. According to this method, no task is rejected, but the 
tasks are executed with reduced performance requirements. 

2.3 ADMISSION CONTROL METHODS 

When a real-time system is underloaded and dynamic activation of tasks is not allowed, 
there is no need to consider task importance in the scheduling policy, since there exist 



optimal scheduling algorithms that can guarantee a feasible schedule under a set of 
assumptions. For example, Dertouzos [Der74] proved that EDF is an optimal algorithm 
for preemptive, independent tasks when there is no overload. 

On the contrary, when tasks can be activated dynamically and an overload occurs, 
there are no algorithms that can guarantee a feasible schedule of the task set. Since 
one or more tasks will miss their deadlines, it is preferable that late tasks be the less 
important ones in order to achieve graceful degradation. Hence, in overload conditions, 
distinguishing between time constraints and importance is crucial for the system. In 
general, the importance of a task is not related to its deadline or its period; thus, a task 
with a long deadline could be much more important than another one with an earlier 
deadline. For example, in a chemical process, monitoring the temperature every ten 
seconds is certainly more important than updating the clock picture on the user console 
every second. This means that, during a transient overload, is better to skip one or 
more clock updates rather than missing the deadline of a temperature reading, since 
this could have a major impact on the controlled environment. 

In order to specify importance, an additional parameter is usually associated with each 
task, its ~ a l u e ,  that can be used by the system to make scheduling decisions. 

2.3.1 DEFINING VALUES 

The value associated with a task reflects its importance with respect to the other tasks 
in the set. The specific assignment depends on the particular application. For instance, 
there are situations in which the value is set equal to the task computation time; in other 
cases, it is an arbitrary integer number in a given range; in other applications, it is set 
equal to the ratio of an arbitrary number (which reflects the importance of the task) and 
the task computation time; this ratio is referred to as the  due denrity. 

In a real-time system, however, the actual value of a task also depends on the time at 
which the task is completed; hence, the task importance can be better described by a 
utility function. Figure 2.3 illustrates some utility functions that can be associated with 
tasks in order to describe their importance. According to this view, a non-real-time 
task, which has no time constraints, has a low constant value, since it always contributes 
to the system value whenever it completes its execution. On the contrary, a hard task 
contributes to a value only if it completes within its deadline, and, since a deadline miss 
would jeopardize the behavior of the whole system, the value after its deadline can be 
considered minus infinity in many situations. A task with a soft deadline, instead, can 
still give a value to the system if executed after its deadline, although this value may 
decrease with time. Then, there can be real-time activities, so-called$~'?iz, that do not 
jeopardize the system but give zero value if completed after their deadline. 
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Figure 2.3 Utility functions that can be associated to a task to describe its importance. 

Once the importance of each task has been defined, the performance of a scheduling 
algorithm can be measured by accumulating the values of the task utility functions 
computed at their completion time. Specifically, the ciirnulnfi~~e value achieved by a 
scheduling algorithm 4 is defined as follows: 

Notice that if a hard task misses its deadline, the cumulative value achieved by the 
algorithm is minus infinity,even though all other tasks completed before their deadlines. 
For this reason, all activities with hard timing constraints should be guaranteed a priori 
by assigning them dedicated resources (included processors). If all hard tasks are 
guaranteed a priori, the objective of a real-time scheduling algorithm should be to 
guarantee a feasible schedule in underload conditions and maximize the cumulative 
value of soft and firm tasks d~lring transient overloads. 

Given a set of n jobs J ,  (C,. D l .  L:), where C, is the worst-case computation time, 
D, is the relative deadline, and 1; is the importance value gained by the system when 
the task completes within its deadline, the maximum cumulative value achievable on 
the task set is clearly equal to the sum of all values 1;; that is, T,,, = xr=, 1:. 
In overload conditions, this value cannot be achieved, since one or more tasks will 
miss their deadlines. Hence, if r" is the maximum possible cumulative value that can 
be achieved on the task set in overload conditions, the performance of a scheduling 
algorithm A can be meas~lred by comparing the cumulative value r 4 obtained by A 



with the maximum achievable value r ". In this context, a scheduling algorithm that is 
able to achieve a cumulative value equal to r is an optimal algorithm. 

It is easy to show that no optimal on-line algorithms exist in overloads. Without an 
a priori knowledge of the task arrival times, no on-line algorithm can guarantee the 
maximum cumulative value T *. This value can only be achieved by an ideal clairvoyant 
scheduling algorithm that knows the future arrival time of any task. 

A parameter that measures the worst-case performance of a scheduling algorithm in 
overload condition is the cornyefifive f a c f o r  introducedby Baruah et al. in [BKM +92]. 

Definition 2.1 A schediilirlg algoritlzrri A lzas a competitive factor 9 4 i f a d  ordy if it 
can gzmurltee a cz~rnz~la t i~~e  value 

From this definition, we can notice that the competitive factor is a real number 9 4 E 

[O. 11. If an algorithm A has a competitive factor q ~ ,  it means that A can achieve a 
cumulative value at least q .4  times the cumulative value achievable by the optimal 
clairvoyant scheduler on any task set. 

If the overload has an infinite d~lration, then no on-line algorithm can guarantee a com- 
petitive factor greater than zero. In real situations, however, overloads are intermittent 
and usually have a short duration; hence, it is desirable to use scheduling algorithms 
with a high competitive factor. An important theoretical result found in [BKM+92] 
is that there exists an upper bound on the competitive factor of any on-line algorithm. 
This is stated by the following theorem. 

Theorem 2.1 (Baruah et al.) III r>stenzs ithere the loading factor is greater tlzan 2 
jp > 2) arld tarks' ~ d i i e r  are plnportiorlal to their cornputation timer, rlo onlirle 
algorithm can gzmarltee a conzpetitive fcictcw greater tlzan 0.25. 

In general, the bound on the competitive factor as a function of the load has been 
computed in [BR91] and it is shown in Figure 2.4. 

With respect to the strategy used to predict and handle overloads, most of the scheduling 
methods proposed in the literature can be divided into three main classes, illustrated in 
Figure 2.5: 
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Figure 2.4 Bound of the competiti~e factor of an on-line scheduling algorithmas a function 
of the load. 

Best Effort Scheduling. This class includes those algorithms with no prediction 
for overload conditions. At its arrival, a new task is always accepted into the ready 
queue, so the system performance can only be controlled through a proper priority 
assignment. 

Simple Admission Control. This class includes those algorithms in which the 
load on the processor is controlled by an acceptance test executed at each task 
arrival. Typically, whenever a new task enters the system, a guarantee routine 
verifies the schedulability of the task set based on worst-case assumptions. If 
the task set is found schedulable, the new task is accepted in the ready queue; 
otherwise, it is rejected. 

Robust Scheduling. This class includes those algorithms that separate timing 
constraints and importance by considering two different policies: one for task 
acceptance and one for task rejection. Typically, whenever a new task enters the 
system, an acceptance test verifies the schedulability of the new task set based 
on worst-case assumptions. If the task set is found schedulable, the new task is 
accepted; otherwise, one or more tasks are rejected based on a different policy. 

Notice that the simple admission control scheme is able to avoid domino effects by 
sacrificing the execution of the newly arrived task. Basically, the acceptance test acts 
as a filter that controls the load on the system and always keeps it less than one. 
Once a task is accepted, the algorithm guarantees that it will complete by its deadline 
(assuming that no task will exceed its estimated worst-case computation time). This 
scheme, however, does not take task importance into account and, during transient 
overloads, always rejects the newly arrived task, regardless of its value. In certain 



conditions (such as when tasks have very different importance levels), this scheduling 
strategy may exhibit poor performance in terms of cumulative value, whereas a robust 
algorithm can be much more effective. 

In the best effort scheme, the cumulative value can be increased using suitable heuristics 
for scheduling the tasks. For example, in the Spring kernel [SR87], Stankovic and 
Ramamritham proposed to schedule tasks by an appropriate heuristic function that can 
balance timing properties and importance values. 

In robust algorithms, a reclaiming mechanism can be used to take advantage of those 
tasks that complete before their worst-case finishing time. To reclaim the spare time, 
rejected tasks will not be removed but temporarily parked in a queue, from which they 
can be possibly recovered whenever a task completes before its worst-case finishing 
time. 

In the following sections we present a few examples of scheduling algorithms for 
handling overload situations and then compare their performance for different peak 
load conditions. 

a h  a) s accepted 
task Read) queue 

(a) 

task Read! queue 

I 

Reject queue 

Figure 2.5 Scheduling schemes for handling overload situations. a. Best Effort schedul- 
ing. b. Admission control. c. Robust Scheduling. 
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2.3.2 THE RED ALGORITHM 

RED (Robust Earliest Deadline) is a robust scheduling algorithm proposed by Buttazzo 
and Stankovic [BS93, BS951 for dealing with firm aperiodic tasks in overloaded en- 
vironments. The algorithm synergistically combines many features including graceful 
degradation in overloads, deadline tolerance, and resource reclaiming. It operates in 
normal and overload conditions with excellent performance, and it is able to predict 
not only deadline misses but also the size of the overload, its duration, and its overall 
impact on the system. 

In RED, each task is characterized by four parameters: a worst-case execution time 
(C,), a relative deadline (D,), a deadline tolerance (JI,), and an importance value (1;). 
The deadline tolerance is the amount of time by which a task is permitted to be late; 
that is, the amount of time that a task may execute after its deadline and still produce a 
valid result. This parameter can be useful in many real applications, such as robotics 
and multimedia systems, where the deadline timing semantics is more flexible than 
scheduling theory generally permits. 

Deadline tolerances also provide a sort of compensation for the pessimistic evaluation 
of the worst-case execution time. For example, without tolerance, we could find that a 
task set is not feasibly schedulable and hence decide to reject a task. But, in reality, the 
system could have been scheduled within the tolerance levels. Another positive effect 
of tolerance is that various tasks could actually finish before their worst-case times, so 
a resource reclaiming mechanism could then compensate, and the tasks with tolerance 
could actually finish on time. 

In RED, the primary deadline plus the deadline tolerance provides a sort of secondary 
deadline, used to run the acceptance test in overload conditions. Notice that having 
a tolerance greater than zero is different than having a longer deadline. In fact, tasks 
are scheduled based on their primary deadline but accepted based on their secondary 
deadline. In this framework, a schedule is said to be ~ f r i c f l ?  feasible if all tasks complete 
before their primary deadline, whereas is said to be tolel-ant if there exists some task 
that executes after its primary deadline but completes within its secondary deadline. 

The guarantee test performed in RED is formulated in terms of residual laxity L ,, de- 
fined as the interval between its estimated finishing time ( f  ,) and its primary (absolute) 
deadline (d,). All residual laxities can be efficiently computed in O(l l ) ,  in the worst 
case. 

To simplify the description of the RED guarantee test, we define the Exceeding time 
E, as the time that task executes after its secondary deadline: 



We also define the Mciuinlim E.uceeclirlg Time El,,,, as the maximum among all E l ' s  
in the tasks set; that is, El,,,, = mas, (E , ) .  Clearly, a schedule will be strictly feasible 
if and only if L ,  > 0 for all tasks in the set, whereas it will be tolerant if and only if 
there exists some L,  < 0, but E ,,,, , = 0. 

By this approach we can identify which tasks will miss their deadlines and compute the 
amount of processing time required above the capacity of the system - the maximum 
exceeding time. This global view allows to plan an action to recover from the overload 
condition. Many recovering strategies can be used to solve this problem. The simplest 
one is to reject the least-value task that can remove the overload situation. In general, 
we assume that, whenever an overload is detected, some rejection policy will search 
for a subset J" of least-value tasks that will be rejected to maximize the cumulative 
value of the remaining s~lbset. The RED acceptance test is shown in Figure 2.6. 

E = 0; /* Maximum Exceeding Time */ 

Lo = 0;  

do = cu?-rent-t1me(); 

J1 = J u {.Jr ,,,, ); 
k = <position of J,,,, in the task set J 1 > ;  

for each task Ji such that 2 > k do { 
1' compute the maximum exceeding time ' 1  

L ,  = L I P ,  + (d, - d Z P l )  - c,; 
if (L ,  + JI, < E )  then E = ( L ,  + J I , ) ;  

1 

if (E > 0) { 
<select a set J" of least-value tasks to be rejected>; 

<reject all task in J" >; 

1 
1 

Figure 2.6 The RED acceptance test. 
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In RED, a resource reclaiming mechanism is used to take advantage of those tasks that 
complete before their worst-case finishing time. To reclaim the spare time, rejected 
tasks are not removed forever but temporarily parked in a queue, called Reject Queue, 
ordered by decreasing values. Whenever a running task completes its execution before 
its worst-case finishing time, the algorithm tries to reaccept the highest-value tasks in 
the Reject Queue having positive laxity. Tasks with negative laxity are removed from 
the system. 

2.3.3 A COMPETITIVE ALGORITHM 

Koren and Shasha [KS92] found an on-line scheduling algorithm, called D O"", which 
has been proved to be optimal, in the sense that it gives the best competitive factor 
achievable by any on-line algorithm (that is, 0.25). 

As long as no overload is detected, Do"" behaves like EDF. An overload is detected 
when a ready task reaches its Latest Starf T m e  (LST); that is, the time at which the 
task's remaining computation time is equal to the time remaining until its deadline. At 
this time, some task must be abandoned: either the task that reached its LST or some 
other task. In Do,, , , the set of ready tasks is partitioned in two disjoint sets: yl-i~ileged 
tasks and ~ n i t i r g  tasks. Whenever a task is preempted it becomes a yl-i~ileged task. 
However, whenever some task is scheduled as the result of a LST, all the ready tasks 
(whether preempted or never executed) become waiting tasks. 

When an overload is detected because a task J ,  reaches its LST ,  then the value of J ,  
is compared against the total value 1/;,.,, of all the privileged tasks (including the value 
r3,,,, of the c~lrrently running task). If 

(where k is ratio of the highest value density and the lowest value density task in the 
system), then J ,  is executed; otherwise, it is abandoned. If J ,  is executed, all the 
privileged tasks become waiting tasks. Task J ,  can in turn be abandoned in favor of 
another task J ,  that reaches its LST ,  but only if c ,  > (1 + fi)ts,. 

It worth to observe that having the best competitive factor among all on-line algorithms 
does not mean having the best performance in aq load condition. In fact, in order 
to guarantee the best competitive factor, DOL" may reject tasks with values higher 
than the current task but not higher than the threshold that guarantees optimality. In 
other words, to cope with worst-case sequences, Do"" does not take advantage of 
lucky sequences and may reject more value than it is necessary. In Section 2.3.4, the 
performance of Do,, , is tested for random task sets and compared with the one of other 
scheduling algorithms. 



2.3.4 PERFORMANCE EVALUATION 

In this section, the performance of the scheduling algorithms described above is tested 
through simulation using a synthetic workload. Each plot on the graphs represents the 
average of a set of 100 independent simulations, the duration of each is chosen to be 
300,000 time units long. The algorithms are executed on task sets consisting of 100 
aperiodic tasks, whose parameters are generated as follows. The worst-case execution 
time C, is chosen as a random variable with uniform distribution between 50 and 350 
time units. The interarrival time T, is modeled as a random variable with a Poisson 
distribution with average value equal to T, = AITC,/p, where 5 is the total number of 
tasks and p is the average load. The laxity of a task is computed as a random value 
with uniform distribution from 150 and 1850 time units, and the relative deadline is 
computed as the sum of its worst-case execution time and its laxity. The task value 
is generated as a random variable with uniform distribution ranging from 150 to 1850 
time units, as for the laxity. 

The first experiment illustrates the effectiveness of the guarantee and robust scheduling 
paradigm with respect to the best-effort scheme, under the EDF priority assignment. 
In particular, it shows how the pessimistic assumptions made in the guarantee test 
affect the performance of the algorithms and how much a reclaiming mechanism can 
compensate for this degradation. In order to test these effects, tasks were generated 
with actual execution times less than their worst-case values. The specific parameter 
varied in the simulations was the average Ullused Corizp~tafior~ Time Ratio, defined as 

Actual Computation Time 
9 = 1 -  

Worst-case Computation Time ' 

Note that, if pn is the non~inal load estimated based on the worst-case computation 
times, the acfiml load p is given by 

In the graphs reported in Figure 2.7, the task set was generated with a nominal load 
p,, = 3, while 3 was varied from 0.125 to 0.875. As a consequence, the actual mean 
load changed from a value of 2.635 to a value of 0.375, thus ranging over very different 
actual load conditions. The performance was measured by computing the Hit Vciliie 
Ratio (HVR);  that is, the ratio of the cumulative value achieved by an algorithm and 
the total value of the task set. Hence, HI/'R = 1 means that all the tasks completed 
within their deadlines and no tasks were rejected. 

In Figure 2.7, the GED curve refers to the guaranteedEDF scheme implemented with a 
simple admission control, while theRED curve refers to the robust EDF algorithm. For 
small values of 3, that is, when tasks execute for almost their maximum computation 
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Nominal load = 3 

0.1 I I 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Average unused computaton time ratio (beta) 

Figure 2.7 Performance of various EDF schecluling schernes: best-effort (EDF). guaran- 
teed (GED) and rohust (RED). 

time, the guarantee (GED) and robust (RED) versions are able to obtain a significant 
improvement compared to the plain EDF scheme. Increasing the unused computation 
time, however, the actual load falls down and the plain EDF performs better and better, 
reaching the optimality in underload conditions. Notice that as the system becomes 
underloaded (3  -. 0.7) GED becomes less effective than EDF. This is due to the fact that 
GED performs a worst-case analysis, thus rejecting tasks that still have some chance 
to execute within their deadline. This phenomenon does not appear on RED, because 
the reclaiming mechanism implemented in the robust scheme is able to recover the 
rejected tasks whenever possible. 

In the second experiment, Do,,, is compared against two robust algorithms: RED 
(Robust Earliest Deadline) and RHD (Robust High Density). In RHD, the task with the 
highest value density (r~, /C,)  is scheduled first, regardless of its deadline. Performance 
results are shown in Figure 2.8. 

Notice that in underloadconditions Do.,, and RED exhibit optimal behavior (HI/ 'R = 

I), whereas RHD is not able to achieve the total cumulative value, since it does not take 



0.4 0.6 0.8 1 1.2 1.4 1.6 
Average load 

Figure 2.8 Performance of Do,.,, against RED and RHD. 

deadlines into account. However, for high load conditions (p > 1.5), RHD performs 
even better than RED and Do,,,.. 

In particular, for random task sets, Do,,, is less effective than RED and RHD for two 
reasons: first, it does not have a reclaiming mechanism for recovering rejected tasks in 
the case of early completions; second, the threshold value used in the rejection policy 
is set to reach the best competitive factor in a worst-case scenario. But this means that 
for random sequences Do,,, may reject tasks that could increase the cumulative value, 
if executed. 

In conclusion, we can say that in overload conditions no on-line algorithm can achieve 
optimal performance in terms of cumulative value. Competitive algorithms are de- 
signed to guarantee a rninir~zun~ performance in any load condition, but they cannot 
guarantee the best performance for all possible scenarios. For random task sets, robust 
scheduling schemes appear to be more appropriate. 
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2.4 PERFORMANCE DEGRADATION METHODS 

According to this approach, the incoming activities that cause an overload are not 
rejected to preserve the active tasks; rather, the system load is reduced to accommodate 
them. Load reduction can be achieved at the price of aperformance degradation through 
the following methods: 

I .  Service adaptation. The load is controlled by reducing the computation times of 
application tasks, thus affecting the quality of results. 

2. Job skipping. The load is reduced by aborting entire task instances, but still 
guaranteeing that a minimum percentage of jobs is executed within the specified 
constraints. 

3 .  Period adaptation. The load is reduced by relaxing timing constraints, thus 
allowing tasks to specify a range of values. 

2.5 SERVICE ADAPTATION 

A possible method for reducing the service time in overload conditions is to trade 
precision with computation time. The concept of imprecise and approximate computa- 
tion has emerged as a new approach to increasing flexibility in dynamic scheduling by 
trading off computation accuracy with timing requirements [Nat95, LNL87, LLN87, 
LLS+91, LSL+94]. In dynamic situations, where time and resources are not enough 
for computations to complete within the deadline, there may still be enough resources 
to produce approximate results. The idea of using partial results when exact results 
cannot be produced within the deadline has been used for many years. Recently, how- 
ever, this concept has been formalized, and specific techniques have been developed 
for designing programs that can produce partial results. Examples of applications that 
can exploit this technique include optimization methods (e.g., simulated annealing), 
cost-based heuristic searches, neural learning, and graphics activities. 

In a real-time system that supports imprecise computation, every task J ,  is decomposed 
into a nzarldatoq subtask J I ,  and an optional subtask 0 , .  The mandatory subtask is the 
portion of the computation that must be done in order to produce a result of acceptable 
quality, whereas the optional subtask refines this result [SLCG89]. Both subtasks have 
the same arrival time a ,  and the same deadline d, as the original task J , ;  however, 0, 
becomes ready for execution when JI, is completed. If C, is the computation time 
associated with J , ,  subtasks J I ,  and 0, have computation times m ,  and o,, such that 
i n ,  + o, = C,. In order to guarantee a minimum level of performance, A21, must be 



completed within its deadline, whereas 0 ,  can be left incomplete, if necessary, at the 
expense of the quality of the result produced by the task. 

It is worth noticing that the task model used in traditional real-time systems is a special 
case of the one adopted for imprecise computation. In fact, a hard task corresponds to 
a task with no optional part ( o ,  = O), whereas a soft task is equivalent to a task with 
no mandatory part (n? , = 0) .  

In systems that support imprecise computation, the error E ,  in the result produced by 
.Jz (or simply the error of J , )  is defined as the length of the portion of 0 ,  discarded in 
the schedule. If D, is the total processor time assigned to 0,  by the scheduler, the error 
of task J ,  is equal to 

E l  = 0 ,  - 0, .  

The alvtzge error t o n  the task set J  is defined as 

where w ,  is the relative importance of J ,  in the task set. An error E ,  > 0 means that a 
portion of s~lbtask 0, has been discarded in the schedule at the expense of the quality 
of the result produced by task J ,  but for the benefit of other mandatory s~lbtasks that 
can complete within their deadlines. 

In this model, a schedule is said to be f e a ~ i b k  if every mandatory s~lbtask JI, is 
completed in the interval [a,. d,]. A schedule is said to be yreci~e if the average error F 
on the task set is zero. In a precise schedule, all mandatory and optional s~lbtasks are 
completed in the interval [a,. d,] . 

As an illustrative example, let us consider the task set shown in Fig~lre 2.9a. Notice 
that this task set cannot be precisely scheduled; however, a feasible schedule with 
an average error of F = 1 can be found, and it is shown in Fig~lre 2.9b. In fact, all 
mandatory subtasks finish within their deadlines, whereas not all optional subtasks are 
able to complete. In particular, a time unit of execution is subtracted from 0 1, two units 
from 03, and one unit from 0 5 .  Hence, assuming that all tasks have an importance 
value equal to one ( z c ,  = I), the average error on the task set is F = 1. 

When an application task cannot be split into a mandatory and an optional part that can 
be aborted at any time, service adaptation can still be performed, at a coarse granularity, 
if multiple versions are provided for the task, each having different length and quality 
(the longer the task, the higher the quality). In this case, to cope with an overload 
condition, a high-quality version of a task may be replaced with a shorter one with 
lower quality. If all the tasks follow such a model, the objective of the system would 
be to maximize the overall quality under feasibility constraints. 
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Figure 2.9 An example of an imprecise schedule. 



2.6 JOB SKIPPING 

Classical real-time scheduling theory ([LL73, SRL90, Bak9lI) assumes that periodic 
tasks have hard timing constraints, meaning that all the instances of a periodic task 
must be guaranteed to complete within their deadlines. While such task model is 
suitable for critical control applications, it can be too restrictive for other applications: 
for example, in multimedia communication systems, skipping a video frame once in 
a while is acceptable to cope with transient overload situations. Even in more critical 
control applications, hard real-time tasks usually coexist with firm and soft real-time 
activities, which need to be treated in a different manner in order to optimize the 
available resources. 

Permitting skips in periodic tasks increases system flexibility, since it allows to make 
a better use of resources and to schedule systems that would otherwise be overloaded. 
Consider for example two periodic tasks, rl and 7-2, with periods p 1  = 10, p 2  = 100, 
and execution times C1 = 5 and C2 = 55, where rl can skip an instance every 10 
periods, whereas rL is hard (i.e., no instances can be skipped). Clearly, the two tasks 
cannot be both scheduled as hard tasks, because the processor utilization factor is 
C = 5/10 + 551100 = 1.05 > 1. However, if 7 1  is permitted to skip one instance 
every 10 periods, the spare time can be used to accommodate the execution of 7 2 .  

The job ~kiyying model has been originally proposed by Koren and Shasha [KS95]. 
In their work, the authors showed that making optimal use of skips is NP-hard and 
presented two algorithms, called Skip-Over Algorithms (one a variant of rate monotonic 
scheduling and one of earliest deadline first) that exploit skips to increase the feasible 
periodic load and schedule slightly overloaded systems. According to the job skipping 
model, the maximum number of skips for each task is controlled by a specific parameter 
associated with the task. In particular, each periodic task r, is characterized by a worst- 
case computation time c, ,  a period p, ,  a relative deadline equal to its period, and a skip 
parameters,, 2 < s ,  < x, which gives theminimum distance between two consecutive 
skips. For example, if s ,  = 5 the task can skip one instance every five. When s ,  = x 
no skips are allowed and 7, is equivalent to a hard periodic task. The skip parameter 
can be viewed as a Q d i h  qf Sewice (QoS) metric (the higher s ,  the better the quality 
of service). 

Using the terminology introduced by Koren and Shasha in [KS95], every instance of 
a periodic task with skips can be red or blue. A red instance must complete before its 
deadline; a blue instance can be aborted at any time. When a blue instance is aborted, 
we say that it was skipped. The fact that s > 2 implies that, if a blue instance is 
skipped, then the next s - 1 instances must be red. On the other hand, if a blue instance 
completes successfully, the next task instance is also blue. 



Overload Management 

Two on-line scheduling algorithms were proposed in [KS95] to handle tasks with skips 
under EDF. 

1. The first algorithm, called Red Tasks Only (RTO), always rejects the blue instances, 
whereas the red ones are scheduled according to EDF. 

2. The second algorithm, called Blue When Possible (BWP), is more flexible than 
RTO and schedules blue instances whenever there are no ready red jobs to execute. 
Red instances are scheduled according to EDF. 

It is easy to find examples that show that BWP improves RTO in the sense that it is 
able to schedule task sets that RTO cannot schedule. In the general case, the above 
algorithms are not optimal, but they become optimal under a particular task model, 
called the deeply-red model. 

Definition 2.2 A system is deeply-red if all tasks are synchronously activated and the 
first s, - 1 instances of every task T ,  are red. 

In the same paper, Koren and Shasha showed that the worst case for aperiodic skippable 
task set occurs when tasks are deeply-red, hence all the results are derived under this 
assumption. This means that, if a task set is schedulable under the deeply-red model, 
it is also schedulable without this assumption. 

In the hard periodic model in which all task instances are red (i.e., no skips are per- 
mitted), the schedulability of a periodic task set can be tested using a simple necessary 
and sufficient condition based upon cumulative processor utilization. In particular, Liu 
and Layland [LL73] showed that a periodic task set is schedulable by EDF if and only 
if its cumulative processor utilization is no greater than 1. Analyzing the feasibility 
of firm periodic tasks is not equally easy. Koren and Shasha proved that determining 
whether a set of skippable periodic tasks is schedulable is NP-hard. They also found 
that, given a set r = {T,(p,, c i ,  s , ) )  of firm periodic tasks that allow skips, then 

is a necessary condition for the feasibility of F, since it represents the utilization based 
on the computation that must take place. 

To better clarify the concepts mentioned above consider the task set shown in Fig- 
ure 2.10 and the corresponding feasible schedule, obtained by EDF. Notice that the 



Task I Task1 I Task2 Task3 I 
I Cor~zu~rtafion I 1 I 2 I 5 I 

I I I I 

Period 1 3 1 4 1 2 1  
/ Skip Puranleter 1 4 1 3 x 1 

Figure 2.10 A scheclulable set of firm periodic tasks 

processor utilization factor is greater than 1 (C, = 1.25), but condition (2.2) is satis- 
fied. 

In the same work, Koren and Shasha proved the following theorem, which provides a 
sufficient condition for guaranteeing a set of skippable periodic tasks under EDF. 

Theorem 2.2 A Jet ofJir/ i~ (i.e., ~k iyyable)  periodic tasks is ~ched~rlable ( f  

If skips are permitted in the periodic task set, the spare time saved by rejecting the blue 
instances can be reallocated for other purposes. For example, for scheduling slightly 
overloaded systems or for advancing the execution of soft aperiodic requests. 

Unfortunately, the spare time has a "granular" distribution and cannot be reclaimed at 
any time. Nevertheless, it can be shown that skipping blue instances still produces a 
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bandwidth saving in the periodic schedule. In [CB97], Caccamo and Buttazzo gen- 
eralized the results of Theorem 2.2 by identifying the amount of bandwidth saving 
achieved by skips. To express this fact with a simple parameter, they defined an equiv- 
alerlt iiti1i:atiorl fcictor C; for periodic tasks with skips. 

Definition 2.3 Ghwz a Jet r = {Tz(pz .  c,. s , ) )  of 7 2  periodic tasks that allow skipa, 
an equivalent processor utilization factor can be dqfined as: 

The following theorem ([CB97]) states the schedulability condition for a set of deeply- 
red skippable tasks. 

Theorem 2.3 A Jet r o f~k i yyab le  periodic taska, ~vhich are deeply-red, is sclzedulable 
if and only ( f  

c;. < 1. 

The bandwidth saved by skipping blue instances can easily be exploited by an aperiodic 
server (like CBS [AB98a] described in Chapter 3) to advance the execution of aperiodic 
tasks. The following theorem ([CB97]) provides a sufficient condition for guaranteeing 
a feasible schedule of a hybrid task set consisting of n firm periodic tasks and a number 
of soft aperiodic tasks handled by a server with bandwidth C,.  

Theorem 2.4 Ghwz a sef ofperiodic f a s k ~  that allow o kip ~v i th  erjui~alent ~rtili,-atiorz 
CJ and a sef qf sqff aperiodic f a ~ k s  lzandled by a Jerver ~v i th  utilication~factor L7,, flze 
h ~ b r i d  set ir schediilable OJ RTO or BWP if: 

The sufficient condition of Theorem 2.4 is a consequence of the "granular" distribution 
of the spare time produced by skips. In fact, a fraction of this spare time is uniformly 
distributed along the schedule and can be used as an additional free bandwidth (C ,k,, = 

C; - 5) available for aperiodic service. The remaining portion of the spare time saved 



by skips is discontinuous, and creates a kind of "holes" in the schedule, which cannot 
be used at any time, unfortunately. Whenever an aperiodic request falls into some hole, 
it can exploit a bandwidth greater than 1 - C,". Indeed, it is easy to find examples in 
which a periodic task set is schedulable by assigning the aperiodic server a bandwidth 
C, greater than 1 - C;. The following theorem ([CB97]) gives a maximum bandwidth 
Cs,r,tz, above which the schedule is certainly not feasible. 

Theorem 2.5 Given a set F = { T z ( p z .  el.  s , ) )  of n periodic tasks tlmt a l l o ~ ,  skips arld 
an aperiodic sewer ~v i t h  Dand~vidflz L'Ts, a necessav condition for flze feasibilih qf r 
is: 

r r s  5 I/Ts ,,, ,, , 

AN EXAMPLE 

As an illustrative example, let us consider the task set shown in Table2.1. The task 
set consists of two periodic tasks, 71 and 7 2 ,  with periods 3 and 5, computation times 
2 and 2, and skip parameters 2 and x respectively. The equivalent utilization factor 
of the periodic task set is C;I = 415 while C,,,? , = 0.27, leaving a bandwidth of 
Cs = 115 for the aperiodic tasks. Three aperiodic jobs J 1 ,  .J2, and .J3 are released at 
times t l  = 0, t2 = G, and t3 = 18; moreover, they have computation times c';"' = 1, 
c;~' = 2, and ezP' = 1, respectively. 

Table 2.1 A schedulable task set 

Supposing that the aperiodic activities are scheduled by a CBS server with maximum 
budget Q' = 1 and server period P' = 5, Figure 2.1 1 shows the resulting schedule 
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Figure 2.11 Schedule produced b> RTO+CBS fol the task set sho\+n in Table 2 1 

by using RTO+CBS. Notice that .J2 has a deadline postponement (according to CBS 
rules) at time t = 10 with new server deadline d;L,, = d& + P' = 11 + 5 = 16. 
According to the sufficient schedulability test provided by Theorem 2.4, the task set is 
schedulable when the aperiodic server has assigned a bandwidth C, = 1 - C;. 

2.7 PERIOD ADAPTATION 

In a periodic task set, processor utilization can also be changed by varying task periods. 
Whenever the system load becomes greater than a maximum threshold, the periods can 
be enlarged in a proper way to bring the system load back to the desired value. Today, 
there are many real-time applications in which timing constraints are not rigid, but can 
be varied to better react to transient overload conditions. 

For example, in multimedia systems, activities such as voice sampling, image acqui- 
sition, sound generation, data compression, and video playing, are performed period- 
ically, but their execution rates are not as rigid as in control applications. Missing a 
deadline while displaying an MPEG video may decrease the quality of service (QoS), 
but does not cause critical system faults. Depending on the requested QoS, tasks may 
increase or decrease their execution rate to accommodate the requirements of other 
concurrent activities. 

Even in some control application, there are situations in which periodic tasks could be 
executed at different rates in different operating conditions. For example, in a flight 
control system, the sampling rate of the altimeters is a function of the current altitude of 
the aircraft: the lower the altitude, the higher the sampling frequency. A similar need 
arises in robotic applications in which robots have to work in unknown environments 



where trajectories are planned based on the current sensory information. If a robot 
is equipped with proximity sensors, in order to maintain a desired performance, the 
acquisition rate of the sensors must increase whenever the robot is approaching an 
obstacle. 

In other situations, the possibility of varying tasks' rates increases the flexibility of the 
system in handling overload conditions, providing a more general admission control 
mechanism. For example, whenever a new task cannot be guaranteed by the system, 
instead of rejecting the task, the system can try to reduce the utilizations of the other 
tasks (by increasing their periods in a controlled fashion) to decrease the total load and 
accommodate the new request. 

Unfortunately, there is no uniform approach for dealing with these situations. For 
example, Kuo and Mok [KM91] propose a load scaling technique to gracefully degrade 
the workload of a system by adjusting the periods of processes. In this work, tasks 
are assumed to be equally important and the objective is to minimize the number of 
fundamental frequencies to improve schedulability under static priority assignments. 
In [NT94]. Nakajima and Tezuka show how areal-time system can be used to support an 
adaptive application: whenever a deadline miss is detected, the period of the failed task 
is increased. In [SLSS97], Seto et al. change tasks' periods within a specified range 
to minimize a performance index defined over the task set. This approach is effective 
at a design stage to optimize the performance of a discrete control system, but cannot 
be used for on-line load adjustment. In [LRM96], Lee, Rajkumar and Mercer propose 
a number of policies to dynamically adjust the tasks' rates in overload conditions. In 
[AAS97], Abdelzaher, Atkins, and Shin present a model for QoS negotiation to meet 
both predictability and graceful degradation requirements during overloads. In this 
model, the QoS is specified as a set of negotiation options, in terms of rewards and 
rejection penalties. In [Nak98a, Nak98b1, Nakajima shows how a multimedia activity 
can adapt its requirements during transient overloads by scaling down its rate or its 
computational demand. However, it is not clear how the QoS can be increased when 
the system is underloaded. In [BCRZ99], Beccari et al. propose several policies for 
handling overload through period adjustment. The authors, however, do not address 
the problem of increasing the task rates when the processor is not fully utilized. 

Although these approaches may lead to interesting results in specific applications, a 
more general framework can be used to avoid a proliferation of policies and treat 
different applications in a uniform fashion. 

The elastic model presented in this section was originally introduced by Buttazzo et 
al. [BAL98] and then extended to a more general case [BLCA02]). It provides a novel 
theoretical framework for flexible workload management in real-time applications. In 
particular, the elastic approach provides the following advantages with respect to the 
classical "fixed-rate" approach. 
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it allows tasks to intentionally change their execution rate to provide different 
quality of service; 

it can handle overload situations in a more flexible fashion; 

it provides a simple and efficient method for controlling the system's performance 
as a function of the current workload. 

EXAMPLES 

To better understand the idea behind the elastic model, consider a set of three periodic 
tasks, with computation times C1 = 10, C2 = 10, and Cg = 15 and periods T1 = 20, 
f i  = 40. and T3 = 70. Clearly, the task set is schedulable by EDF because 

Now, suppose that a new periodic task 7 4 ,  with computation time C4 = 5 and period 
T4 = 30, enters the system at time t .  The total processor utilization of the new task set 

In a rigid scheduling framework, 7-4 should be rejected to preserve the timing behavior 
of the previously guaranteed tasks. However, 74 can be accepted if the periods of the 
other tasks can be increased in such a way that the total utilization is less than one. For 
example, if T1 can be increased up to 23, the total utilization becomes L7, = 0.989, 
and hence r4 can be accepted. 

As another example, if tasks are allowed to change their frequency and task r 3 reduces 
its period to 50, no feasible schedule exists, since the utilization would be greater than 

However, notice that a feasible schedule exists (C, = 0.977) for T I  = 22, T2 = 45, 
and T3 = 50. Hence, the system can accept the higher request rate of 7 3  by slightly 
decreasing the rates of rl and 72. Task 73 can even run with a period T 3  = 40, since 
a feasible schedule exists with periods T1 and T2 within their range. In fact, when 
Tl = 24, T2 = 50, and T3 = 40, I.; = 0.992. Finally, notice that if 7 3  requires to run 
at its minimum period (T3 = 35), there is no feasible schedule with periods T1 and T2 
within their range, hence the request of r3 to execute with a period T3 = 35 must be 
rejected. 



Clearly, for a given value of T3, there can be many different period config~lrations which 
lead to a feasible schedule; thus, one of the possible feasible configurations must be 
selected. The elastic approach provides an efficient way for quickly selecting a feasible 
period configuration among the all possible solutions. 

2.7.1 THE ELASTIC MODEL 

The basic idea behind the elastic model is to consider each task as flexible as a spring 
with a given rigidity coefficient and length constraints. In particular, the utilization of 
a task is treated as an elastic parameter, whose value can be modified by changing the 
period within a specified range. 

Each task is characterized by four parameters: a computation time C, .  a nominal period 
T,, (considered as the minimum period), a maximum period T,,,,,, , , and an elastic 
coefficient El > 0, which specifies the flexibility of the task to vary its utilization for 
adapting the system to a new feasible rate configuration. The greater E l ,  the more 
elastic the task. Thus, an elastic task is denoted as: 

In the following, T,  will denote the actual period of task 7,. which is constrained to be 
in the range [TI,  , T,,,,~z 1 .  Any task can vary its period according to its needs within 
the specified range. Any variation, however, is subject to an elnrtic guarantee and is 
accepted only if there exists a feasible schedule in which all the other periods are within 
their range. 

It is worth noting that the elastic model is more general than the classical Liu and 
Layland's task model, so it does not prevent a user from defining hard real-time tasks. 
In fact, a task having T,,r,tz, = T,,, is equivalent to a hard real-time task with fixed 
period, independently of its elastic coefficient. A task with E ,  = 0 can arbitrarily vary 
its period within its specified range, but it cannot be varied by the system during load 
reconfigurations. 

To understand how an elastic guarantee is performed in this model, it is convenient to 
compare an elastic task r, with a linear spring S, characterized by a rigidity coefficient 
k, .  a nominal length x,,, . and a minimum length s , , r ,  ,, . In the following, x ,  will denote 
the actual length of spring S,, which is constrained to be greater or equal to s , , , , , , a .  

In this comparison, the length x ,  of the spring is equivalent to the task's utilization 
factor C, = C,/T,, and the rigidity coefficient k ,  is equivalent to the inverse of the 
task's elasticity ( k ,  = l /E , ) .  Hence, a set of n tasks with total utilization factor 
C P - - ELl C: can be viewed as a sequence of n springs with total length L = ELl x, . 
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Under the elastic model, given set of n periodic tasks with L7, > C,,,, the objective of 
the guarantee is to compress tasks' utilization factors in order to achieve a new desired 
utilization Cc{ ;i C,,,, , such that all the periods are within their ranges. In the linear 
spring system, this is equivalent of compressing the springs so that the new total length 
Lei is less than or equal to a given maximum length L  ,,,, ,. More formally, in the spring 
system the problem can be stated as follows. 

Given a set of n springs with known rigidity and length constraints, if L  0 = x;=, s,, > L,,,, find a set of new lengths s, such that s, > x , , , , , , a  and 
L = Ld, where Ld is any arbitrary desired length such that Ld < L,,,,,. 

For the sake of clarity, we first solve the problem for a spring system without length 
constraints, then we show how the solution can be modified by introducing length 
constraints, and finally we show how the solution can be adapted to the case of a task 
set. 

SPRINGS WITH NO LENGTH CONSTRAINTS 

Consider a set r of n springs with nominal length xu, and rigidity coefficient k, po- 
sitioned one after the other, as depicted in Figure 2.12. Let L  0 be the total length of 
the array, that is the sum of the nominal lengths: L o  = CL1 s,,,. If the array is 
compressed so that its total length is equal to a desired length L d (0  < L d  < Lo), the 
first problem we want to solve is to find the new length s, of each spring, assuming that 
for all 2 ,  0 < x, < x,, (i.e., x = 0).  Being Ld  the total length of the compressed 
array of springs, we have: 

n 

If F is the force that keeps a spring in its compressed state, then, for the equilibrium 
of the system, it must be: 

from which we derive 
F 

By summing equations (2.9) we have: 

Thus, force F can be expressed as 



Figure 2.12 A linear spring system: the total length is Lo \+hen springs are uncompressed 
(a): and Ld < Lo when springs are compressed by applying a force F (b). 

where 
1 

I<,, = - 1 ' C L  
Substituting expression (2.10) into Equations (2.9) we finally achieve: 

A-p 
Vl S ,  = S,,, - ( L O  - Ld) -. (2.12) 

kz 

Equation (2.12) allows us to compute how each spring has to be compressed in order 
to have a desired total length L d. 

INTRODUCING LENGTH CONSTRAINTS 

If each spring has a length constraint, in the sense that its length cannot be less than a 
minimum value x,,,,,,, , then the problem of finding the values x ,  requires an iterative 
solution. In fact, if during compression one or more springs reach their minimum 
length, the additional compression force will only deform the remaining springs. Thus, 
at each instant, the set T can be divided into two s~lbsets: a set r f of fixed springs having 
minimum length, and a set r ,  of variable springs that can still be compressed. Applying 
equations (2.12) to the set F, of variable springs, we have 

I<, 
I 2 I = s - (L,,, - L d  + L f ) -  k1 (2.13) 

where 
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Whenever there exists some spring for which equation (2.13) gives x ,  < x , , , , , a .  the 
length of that spring has to be fixed at its minimum value, sets F f  and F ,  must be 
updated, and equations (2.13), (2.14), (2.15) and (2.16) recomputed for the new set F , . 
If there exists a feasible solution, that is, if the desired final length L d is greater than or 
equal to the minimum possible length of the array L ,,,,, = I:=, J ,  , a .  the iterative 
process ends when each value computed by equations (2.13) is greater than or equal to 
its corresponding minimum x ,,,?, ,, . The complete algorithm for compressing a set F of 
n springs with length constraints up to a desired length LC{ is shown in Figure 2.13. 

COMPRESSING TASKS' UTILIZATIONS 

When dealing with a set of elastic tasks, equations (2.13), (2.14). (2.15) and (2.16) can 
be rewritten by substituting all length parameters with the corresponding utilization 
factors, and the rigidity coefficients k,  and I<, with the corresponding elastic coeffi- 
cients E, and E, . Similarly, at each instant, the set F of periodic tasks can be divided 
into two s~hsets :  a set Tf of fixed tasks having minimum utilization, and a set r ,  of 
variable tasks that can still be compressed. Let C',, = C, IT,,, be the nominal utilization 
of task T,, Co = C:=l Clo be the nominal utilization of the task set, C,, be the sum of 
the nominal utilizations of tasks in F ,  , and C f  be the total utilization factor of tasks in 
F f .  Then, to achieve a desired utilization CTd < Co each task has to be compressed up 
to the following utilization: 

b 
7 ,  E L  C, = C,, - (C,,, - C ; i + C f ) I  (2.17) 

EL 

where 

EL = x E,. 
r , E T ,  

If there exist tasks for which L7, < L;,,, , , a ,  then the period of those tasks has to be fixed 
at its maximum value T , , r , ~ z ,  (so that C', = C'z,r, ,,), sets T i  and r, must be updated 
(hence, C f  and EL recomputed), and equation (2.17) applied again to the tasks in 



Algorithm Spring-compress(F, LC{) { 

Lo = J l , , ;  

Lmzri = C:=1  XI,^, ,, ; 
if (Ld < L m z n )  return INFEASIBLE; 

) while (ok  == 0) ;  
return FEASIBLE; 

1 

Figure 2.13 Algorithm for compressing a set of springs \+it11 length constraints. 
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I?,. If there exists a feasible solution, that is, if the desired utilization Cd is greater 
than or equal to the minimum possible utilization L7,,,, - - I:=, +, the iterative 

, , , < I  r 

process ends when each value computed by equation (2.17) is greater than or equal to 
its corresponding minimum L7,,r, , ,a. The algorithm1 for compressing a set r of n elastic 
tasks up to a desired utilization LTd is shown in Figure 2.14. 

DECOMPRESSION 

All tasks' utilizations that have been compressed to cope with an overload situation can 
return toward their nominal values when the overload is over. Let r e  be the subset of 
compressed tasks (that is, the set of tasks with T ,  > T,,), let Ta be the set of remaining 
tasks in T (that is, the set of tasks with T, = T,,), and let Cc{ be the current processor 
utilization of T.  Whenever a task in T ,  voluntarily increases its period, all tasks in T ,  
can expand their utilizations according to their elastic coefficients, so that the processor 
utilization is kept at the value of LTd. 

Now, let C', be the total utilization of T,, let C;, be the total utilization of T ,  after 
some task has increased its period, and let C,,, be the total utilization of tasks in T ,  at 
their nominal periods. It can easily be seen that if C,,, + C;, < GTir, all tasks in T ,  
can return to their nominal periods. On the other hand, if C,,, + L, > Cl,,b, then the 
release operation of the tasks in re  can be viewed as a compression, where r f = F a  
and T ,  = T,. Hence, it can still be performed by using equations (2.17), (2.19) and 
(2.20) and the algorithm presented in Figure 2.14. 

PERIOD RESCALING 

If the elastic coefficients are set equal to task nominal utilizations, elastic compression 
has the effect of a simple resealing, where all the periods are increased by the same 
percentage. In order to work correctly, however, period rescaling must be uniformly 
applied to all the tasks, without restrictions on the maximum period. This means having 
C f  = 0 and C,,, = L o .  Under this assumption, by setting E ,  = C,,, equations (2.17) 
become: 

from which we have that 
T T 

0 T, = T,, - 
Cd 

l ~ h e  actual implementation of the algotithm contains mote checks on tasks' xariables. mhicli ate not 
sho\\n here to simplit> its description 



Algorithm Task-compress(T, CCi) { 

ch = Cl IT," ; 
cmzn = I:"=1 CzITz ,,,(,, ; 
if (Cd < L;,,,,) return INFEASIBLE; 

do 

Cf = L;,, = EL = 0; 
for (each r , )  { 

if ( ( E ,  == 0) or (T,  == T, )) 
Cf = r r f  + r r z , , ,  ,, ; 

else { 
EL = EL + E l ;  
~ L , ,  = L" + ~ l , ,  

ok = 1;  
for (each r, E r,) { 

if ( ( E ,  > 0) and (TI  < Tl , r ,~z ,  )) { 
Cz = czll - (Ct0 - Cci + Cf)Ez/EL; 
T,  = Cz/C, ;  
if (Tl > TZ,,?,,, { 

) while (ok == 0): 
return FEASIBLE; 

} 

Figure 2.14 Algorithm for compressing a set of elastic tasks 
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This means that in overload situations (Yo > 1) the compression algorithm causes all 
task periods to be increased by a common scale factor 

Notice that, after compression is performed, the total processor utilization becomes: 

as desired. 

If a maximum period needs to be defined for some task, an on-line guarantee test can 
easily be performed before compression to check whether all the new periods are less 
than or equal to the maximum value. This can be done in O ( n )  by testing whether 

By deciding to apply period rescaling, we loose the freedom of choosing the elastic 
coefficients, since they must be set equal to task nominal utilizations. However, this 
technique has the advantage of leaving the task periods ordered as in the nominal 
configuration, which simplifies the compression algorithm in the presence of resource 
constraints. 

CONCLUDING REMARKS 

The elastic model offers a flexible way to handle overload conditions. In fact, whenever 
a new task cannot be guaranteed by the system, instead of rejecting the task, the system 
can try to reduce the utilizations of the other tasks (by increasing their periods in a 
controlled fashion) to decrease the total load and accommodate the new request. As 
soon as a transient overload condition is over (because a task terminates or voluntarily 
increases its period) all the compressed tasks may expand up to their original utilization, 
eventually recovering their nominal periods. 

The major advantage of the elastic method is that the policy for selecting a solution is 
implicitly encoded in the elastic coefficients provided by the user (for example, based 
on task importance). Each task is varied based on its current elastic status and a feasible 
configuration is found, if there exists one. 

The elastic model is extremely useful for supporting both multimedia systems and 
control applications, in which the execution rates of some computational activities have 
to be dynamically tuned as a function of the current system state. Furthermore, the 



elastic mechanism can easily be implemented on top of classical real-time kernels, and 
can be used under fixed or dynamic priority scheduling algorithms [But93a, LLB +97]. 

It is worth observing that the elastic approach is not limited to task scheduling. Rather, 
it represents a general resource allocation methodology which can be applied whenever 
a resource has to be allocated to objects whose constraints allow a certain degree of 
flexibility. For example, in a distributed system, dynamic changes in node transmission 
rates over the network could be efficiently handled by assigning each channel an elastic 
bandwidth, which could be tuned based on the actual network traffic. An application 
of the elastic model to the network has been proposed in [PGBA02]. 

Another interesting application of the elastic approach is to automatically adapt the 
task rates to the current load, without specifying the worst-case execution times of the 
tasks. If the system is able to monitor the actual execution time of each job, such data 
can be used to compute the actual processor utilization. If this is less than one, task 
rates can be increased according to elastic coefficients to fully utilize the processor. 
On the other hand, if the actual processor utilization is a little grater than one and some 
deadline misses are detected, task rates can be reduced to bring the processor utilization 
at a desired safe value. 

The elastic model has also been extended in [BLCA02] to deal with resource constraints, 
thus allowing tasks to interact through shared memory buffers. In order to estimate 
maximum blocking times due to mutual exclusion and analyze task schedulability, 
critical sections are assumed to be accessed through the StackReso~lrce Policy [Bak9 11. 



TEMPORAL PROTECTION 

In critical real-time applications, where predictability is the main goal of the system, 
traditional real-time scheduling theory can be successfully used to verify the feasibility 
of the schedule under worst-case scenarios. However, when efficiency becomes rele- 
vant and when the worst-case parameters of the tasks are too pessimistic or unknown, 
the hard real-time approach presents some problems. In particular, if a task overruns 
the system can experience a temporary or permanent overload, and, as a consequence, 
some task can miss its deadline. 

In the previous chapter, we presented techniques to deal with permanent overload, in 
which some high level decision must be taken to remove the overload. In this chapter, 
we will present techniques to deal with tasks with transient overruns. Such techniques 
provide the "temporal protection" property: if a task overruns, only the task itself will 
suffer the possible consequences. In this way, we "confine" the effect of a overrun so 
that each task can be analyzed in isolation. 

After an introduction to the problem, we will present two different classes of algo- 
rithms for providing temporal protection: algorithms based on the fairness property, 
often referred to as proportional share algorithms, and algorithms based on resource 
reservation. Finally, we will describe some operating systems that provides resource 
reservation mechanisms. 

3.1 PROBLEMS WITHOUT TEMPORAL 
PROTECTION 

To introduce the problems that can occur when using traditional real-time algorithms 
for scheduling soft real-time tasks, consider a set of two periodic tasks rl and 7 2 ,  with 



Figure 3.1 A task set scl~edulahle under EDF. 

deadline miss , 

Figure 3.2 An instance of 7 2  executing fol "too long" can cause a deadline miss in a. 

Tl = 3 and T2 = 5. If C1 = 2 and C2 = 1, the task set can be feasibly scheduled 
(in fact, 213 + 115 = 13/15 < 1) and the schedule produced by EDF is illustrated in 
Figure 3.1. If, for some reason, the first instance of r 2  increases its execution time to 
3, then 71 misses its deadline, as shown in Figure 3.2. Notice that rl is suffering for 
the misbehavior of another task ( r2) ,  although the two tasks are independent. 

This problem does not specifically depend on EDF, but is inherent to all scheduling 
algorithms that rely on a guarantee based on worst-case execution times (WCETs). 
For instance, Figure 3.3 shows another example in which two tasks, 7-1 = (2.3) and 
7 2  = (1.5). are feasibly scheduled by a fixed priority scheduler (where tasks have 
been assigned priorities based on the rate monotonic priority assignment). However, 
if the first instance of 71 increases its execution from 2 to 3 units of time, then the first 
instance of 72 will miss its deadline. as shown in Figure 3.4. Again. one task (r2) is 
suffering for the misbehavior of another task ( r l ) .  

Notice that, under fixed priority scheduling, a high priority task ( r  1 in the example) 
cannot be influenced by a lower priority task (72). However, task priorities do not 



Figure 3.3 A task set schedulable under RM 
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deadline miss 

Figure 3.4 An instance of 71 executing for "too long" can cause a cleadline miss in ~1 

always reflect importance and are often assigned based on other considerations, like 
schedulability, as for the rate monotonic assignment. If importance values are not 
related with task rates, assigning priorities to tasks is not trivial, if a high schedulability 
bound has to be reached. For some specific task sets, schedulability can be increased 
by applying a period transformation technique [SG90], which basically splits a task 
with a long period into smaller subtasks with shorter periods. However, playing with 
priorities is not the best approach to follow, and the method becomes inefficient for 
large task sets with arbitrary periods. 

The examples presented above show that when a real-time system includes tasks with 
variable (or unknown) parameters, some kind of tenzpornl protecfiorl among tasks is 
desirable. 

Definition 3.1 Tlze fernpornl protection propert) requires flint the ferripolnl behavior 
of a task ir {lot ciffected by the fernpornl Dehn~ior of the other faskr rz~nning ill the 
JvJfenz .  



In a real-time system that provides temporal isolation, a task executing "too much" 
cannot cause the other tasks to miss their deadlines. For example, in the case illustrated 
in Figure 3.2, if temporal protection were enforced by the system, then the task missing 
the deadline would be 7 2 .  

Temporal protection (also referred to as tenzpol-nl irolntion, ferripolnl jil-e\~,allirg, or 
barlhidtlz irolntiorl) has the following advantages: 

it prevents an overrun occurring in a task to affect the temporal behavior of the 
other tasks; 

it allows partitioning the processor into tasks, so that each task can be guaranteed 
in "isolation" (that is, independently of the other tasks in the system) only based 
on the amount of processor utilization allocated to it; 

it provides different types of guarantee to different tasks, for example, a hard 
guarantee to a task and a probabilistic guarantee to another task; 

w when applied to an aperiodic server, it protects hard tasks from the unpredictable 
behavior of aperiodic activities. 

Another important thing to be noticed is that, if the system is in a permanent overload 
condition, some high level action must be taken to remove the overload. The techniques 
described in this chapter act at a lower level: they introduce temporal protection and 
allow the detection of the failing tasks. If the system detects that some task is in a 
permanent overrun condition, then some of the techniques presented in the previous 
chapter (for example the elastic task model, the RED algorithm, etc.) can be applied by 
either removing some task or by degrading the quality of the results of the application. 
Again, consider the example of Figure 3.4: if all instances of T~ execute for 3 instead of 
2 units of time, the overload is permanent and would prevent the execution of r 2 .  In this 
case, the overload could be removed for example by enlarging task periods according 
to the elastic task model, or rejecting some task based on some heuristics, or reducing 
the computation times by degrading the quality of results according to the imprecise 
computation model. 

3.2 PROVIDING TEMPORAL PROTECTION 

Several algorithms have been presented in the literature to provide some form of tem- 
poral protection, both in processor scheduling and in network scheduling l .  To help 

'In this chapter. for the sake of simplicity. we will use the terminology related to processor schecluling. 
Many of the properties and characteristics of the algorithms explained here are also applicable, \+it11 some 
clifference. to the scheduling of other system resources. When necessary. we will specify the differences. 
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Figure 3.5 Schedulers providing temporal protection. 

distinguishing the various algorith~ns and their characteristics, they have been catego- 
rized according to the taxonomy illustrated in Figure 3.5. 

The temporal protection property is also referred to as "temporal isolation" property, 
since many authors stress the fact that each task is "isolated" from the others. In general, 
the idea is to assign each task a "share" of the processor, and the task is guaranteed to 
obtain at least its share. 

The class of algorithms providing temporal protection can be divided in two main 
classes: the class of fciir rclzedzdirg algoritlirnr and the class of reroiilre rerer~atiorl 
algontlznz~. 

3.2.1 FAIR SCHEDULING 

The class of ~fciir slzar-e sclzediding algorithms is based on a theoretical model that 
assumes a fluid allocation of the resources. In some cases (like in P-Fair algorithms) 
each task is directly assigned a share of the processor, whereas in other cases (like in 
proportional share algorithms) each task is assigned a weight, from which a share is 
derived as proportionnl to the task weight. 

In both cases, the objective is to allocate the processor so that in el.ety infewal of time 
each task precisely receives its share of the processor. Notice that such an objective 
cannot be realized in practice, since it would require a infinitely divisible resource: 
no matter how small the interval is, each task should receive its share of the proces- 
sor. But the minimum time granularity of one processor is given by the clock! As 



a consequence, any implementable algorithm can only approximate the ideal one. A 
theoretical algorithm based on the ideal fluid resource allocation model is the Gener- 
alized Processor Sharing (GPS), which will be presented in Section 3.3. The GPS is 
mainly used for evaluation purposes, to verify how closely an algorithm approximates 
the fluid model. 

A parameter that can be used to measure how closely a realistic algorithm approximates 
the ideal one is the lag. For each task, the lag is defined as the difference between the 
execution time actually assigned to a task by the realistic algorithm and the amount of 
time assigned by the ideal fluid algorithm. Hence, the objective of a fair scheduler is 
to limit the lag to an interval as close as possible to 0. 

Most of the algorithms belonging to this class divide the time line into intervals of 
fixed length, called "quantum", with the constraint that only one task per processor can 
be executed in one quantum. The idea is to approximate fluid allocation with small 
discrete intervals of time. 

We can further divide the class of fair scheduling algorithms in p-fair scheduling and 
in proportional share algorithms. The main difference is on how the processor share is 
assigned to tasks. 

In proportional share scheduling, each task is assigned a weight u tz ,  and it receives a 
share of the processor equal to: 

where is the number of tasks. If the number of tasks does not change during the 
system lifetime (i.e., not new tasks are allowed to dynamically join the system, nor 
tasks can leave the system), then the task share is a constant. 

However, if tasks are allowed to dynamically join the system, task shares can change. 
If this change is not controlled, the temporal isolation property is broken: a new tasks 
joining the system can require a very high weight, reducing considerably the share of 
the existing tasks. 

Therefore, if we want to provide temporal guarantees in proportional share schedulers, 
an admission control policy is needed to check whether after each insertion each task 
receives at least the desired share of the processor, and to "re-weight" the tasks in 
order to achieve the desired level of processor share. Proportional share algorithms 
can provide temporal protection only if complemented with proper admission control 
algorithms and re-weighting policies. 

\ In p-fair scheduling, instead, each task is assigned a weight ut,, with utl < AII, 
where 5 is the number of tasks and -21 is the number of processors. Since, the weights 



are already normalized, each task receives a share of the system equal to its weight. 
Therefore, the admission control test is simply to check that the sum of all weights 
does not exceed the number of processors. 

Proportional share algorithms were initially presented in the context of network schedul- 
ing, where the concept of task is substituted with the concept of packets "flow". A 
network link is shared among different flows, each flow is assigned a weight and the 
goal is to allocate the bandwidth of the link to the different flows in a fair manner, so 
that each flow receives a share proportional to its weight. 

The same algorithms have also been applied to the context of processor scheduling. 
One difference between network scheduling and processor scheduling is that in network 
scheduling the basic scheduling unit is the packet. In fact, the packet must be transmitted 
entirely, and cannot be divided into smaller units. Hence, there is no need for specifying 
a "scheduling quantum": the length of the packet is itself the scheduling quantum. The 
problem becomes slightly more complex if packets have different lengths. 

In Section 3.3, we present some of the most popular fair scheduling algorithms in the 
context of processor scheduling. 

3.2.2 RESOURCE RESERVATION 

The class of resource reservation algorithms consists of algorithms derived from clas- 
sical real-time scheduling theory. The first algorithms, generically called "aperiodic 
servers", were proposed to schedule aperiodic soft real-time tasks together with peri- 
odic hard real-time tasks. The goal was to minimize the response time of aperiodic 
tasks without jeopardizing the hard real-time tasks. 

Aperiodic server algorithms were proposed both for fixed priority scheduling and dy- 
namic priority scheduling. In fixed priority scheduling, the main algorithms are the 
Polling Server, the Deferrable Server (DS) and the Sporadic Server (SS) [SSL89, 
LSS87, SLS9.51. In dynamic priority scheduling, the most important algorithms are 
the Total Bandwidth Server (TBS) [SB94, SB961 and the Constant Bandwidth Server 
(CBS) [AB98a, AB041. 

An approach similar to the server algorithms was applied for the first time to soft real- 
time multimedia applications by Mercer et al. [MST94a]. with the explicit purpose of 
providing temporal protection. Later, Rajkumar et al. [RJM098] introduced the term 
"resource reservation" to indicate this class of techniques. 

In all the previous cited algorithms (with the exception of the TBS), a server is char- 
acterized by a budget Q and a period P. The processor share assigned to each server 



is QIP. In the original formulation of these algorithms, one server was defined for 
the entire system, with the purpose of serving all aperiodic tasks in First-Come-First- 
Served (FCFS) order. The behavior of the server is similar to that of a periodic hard 
real-time task with a worst-case execution time equal to the assigned budget Q and 
a period equal to P. Hence, it is possible to apply the existing real-time scheduling 
analysis techniques to check the schedulability of the system. 

Resource reservation algorithms provide the temporal protection property. In one 
possible configuration, every task in the system (periodic or aperiodic, hard or soft 
real-time) is assigned a dedicated server with a share Q , /PI ,  under the constraint that: 

where S is the number of tasks in the system and LTlUh  is the schedulability utilization 
bound, which depends on the adopted scheduling algorithm. Then, each task is guar- 
anteed to obtain a budget Q ,  every server period P,, regardless of the behavior of the 
other tasks in the system. 

It is important to note that in the configuration "one server per task", the assumption of 
periodic or sporadic tasks can be removed. For example, consider a non-real-time non- 
interactive task (like for example a complex scientific computation or the compilation 
of a large program). By assigning a server with a certain budget and a period to this 
task, it will receive a steady and regular allocation of the processor, independently of 
the presence of other (real-time or non-real-time) tasks in the system. 

Resource reservation techniques will be described in detail in Section 3.5, and the 
Constant Bandwidth Server (CBS) [AB98a, AB041 will be presented in Section 3.6.1. 
Before continuing the presentation of the different approaches to temporal protection, 
it is important to highlight the main differences between fair scheduling and resource 
reservation techniques. 

The main objective of a fair scheduler is to keep the lag between the task execution 
and the ideal fluid allocation as close as possible to zero. For this reason, in processor 
scheduling, these algorithms need to introduce the concept of "scheduling quantum" 
that is the basic unit of allocation. The smaller the quantum, the smaller the lag bound. 
However, a small quantum implies a large number of context switches. Moreover, 
once the scheduling quantum has been fixed for the entire system, each task is assigned 
one single parameter, the weight (or the share in p-fair schedulers). The "granularity" 
of the allocation depends on the scheduling quantum while the share of the processor 
depends on the task weight. Therefore, if a task requires a very small granularity, we 
must reduce the scheduling quantum, causing a large number of context switches and 
more overhead. 



Conversely, the goal of a resource reservation algorithm is to keep resource allocation 
under control so that a task can meet its timing constraints. To this end, each reservation 
is associated with two parameters, the budget Q  and the period P. The period of the 
reservation represents the granularity of the allocation needed by the corresponding 
task, while the rate Q / P  represents the share of the processor. Therefore, unlike fair 
schedulers, it is possible to select the most appropriate granularity for each task. If a task 
requires a very small granularity, its reservation period must be reduced accordingly, 
while the other reservations can keep a large period. In the general case, it is possible 
to show that, the number of context switches produced by a reservation scheduler is 
considerably less than the number of context switches produced by a proportional share 
scheduler. 

3.3 THE GPS MODEL 

As explained above, temporal protection can be provided by adding an admission 
control mechanism to a fair scheduler. In fact, if a real-time task is assigned a sufficient 
amount of resources, it can execute at a constant rate, while respecting its timing 
constraints. 

Executing each task 7, at a constant rate is the essence of the Generalized Processor 
Sharing (GPS) approach [PG93, PG941. In this model, each shared resource needed 
by tasks (such as the CPU) is considered as a fluid that can be partitioned among the 
applications. Each task instantaneously receives a fraction f ,  ( t )  of the resource at time 
t ,  where f ,  ( t )  is defined as the task slzar-e. Note that the GPS model can be seen as an 
extreme form of a Weighted Round Robin policy. 

To compute the share of a resource, each task r, is assigned a weight ut,, and its share 
is computed as 

U' 1 

fz(t) = C r ,  E T ( t )  u t ~  

where T( t )  is the set of tasks that are active at time t .  

Since each task consists of one or more requests for shared resources, tasks can block 
and unblock, and the F(t) set can vary with time. Hence, the share f , ( t )  is a time 
varying quantity. The minimum guaranteed share is defined as the r-afe 

where F is the set of all tasks in the system. 



Figure 3.6 Ideal schedule of t\+o GPS tasks. The height of task executions is proportional 
to CPU speed. 

If an appropriate admission control is performed, it is possible to find an assignment of 
weights to tasks to guarantee real-time performance to all the time sensitive applica- 
tions. In fact, based on the task rate, the maximum response time for each task can be 
computed as C , / F , .  The problem with the GPS model is that the task response time 
C ,  I F ,  and the task throughput F, are not independent (using real-time terminology, 
this means that the relative deadline of a task is implicitly equal to its period). 

The GPS model describes a task system as a fluid flow system, in which each task r ,  
is modeled as an infinitely divisible fluid, and executes at a minimum rate F, that is 
proportional to a user specified weight w, .  For example, Figure 3.6 shows the ideal 
schedule of 2 GPS tasks, rl and 72, with weights utl = 3  and ut2 = 1. Note that 
7 2  is always active, whereas 7 1  is a periodic task with period T 1  = 8 and execution 
time C 1  = 3. At time t  = 0 ,  both tasks are active, hence they receives two shares 
f l ( 0 )  = 3 / ( 1  + 3)  = 311 and f 2 (0 )  = 1 / ( 1  + 3)  = 111. This means that the two 
tasks execute simultaneously, and 7 1  executes at 314 of the CPU speed, whereas 7 2  

executes at 114 of the CPU speed. As a result, the first instance of 7 1  finishes at time 
C l / f l ( 0 )  = 3 / ( 3 / 4 )  = 4, when 7 2  remains the only active task in the system and 
receives a share f L ( 4 )  = 1. At time 8, 7 1  activates again and the schedule repeats as at 
time 0. Note that the schedule represented in Figure 3.6 cannot be realized in practice, 
because tasks execute simultaneously. 

According to the ideal GPS model, task r ,  is guaranteed to execute for an amount of 
time s, ( t l .  t 2 )  > ( t 2  - t l ) F z  in each backlogged interval [t 1 .  t 2 ] .  More precisely, the 
amount of time s ,  executed by task r, in an ideal GPS system is: 



As a result, in the ideal fluid flow model, tasks' execution can be described through the 
following GPS guarantee: 

where exec, ( t l ,  t 2 )  is the amount of time actually executed by 7 ,  in the interval [ t l  . t s ] .  
It can be easily seen that Equation 3.1 is equivalent to exec,  ( t l .  t s )  = s ,  ( t l .  t 2 ) .  

3.4 PROPORTIONAL SHARE SCHEDULING 

Although the ideal GPS schedule cannot be realized on a real system, it can be used 
as a reference model to compare the performance of practical algorithms that attempt 
to approximate its behavior. In a real system, resources must be allocated in discrete 
time quanta of size Q, and such a quantum-based allocation causes an allocation error. 
Given two active tasks rl and 72, the allocation error in the time interval [t 1. t 2 ]  can be 
expressed as 

exec, ( t l ,  t ~ )  e x e c l ( t l ,  t L )  

1 ut3 

An alternative way to express the allocation error is the rizaxirriz~rri lag: 

Lay, = m a s { e x e c , ( t l ,  t 2 )  - s , ( t l .  t s ) ) .  
t l  t 2  

Hence, a more realistic version of the GPS guarantee is the following: 

e x e c , ( t l .  t s )  - f , ( t ) d t  < Lay, JI: 
Proportional Share (PS) scheduling was originally developed for handling network 
packets. It provides fairness among different streams by emulating the GPS alloca- 
tion model in a real system, where multiple tasks do not run simultaneously on the 
same CPU, but are executed using a quantum-based allocation. In other words, in a 
Proportional Share scheduler, resources are allocated in discrete time quanta having 
maximum size Q: a process acquires a resource at the beginning of a time quantum 
and releases the resource at the end of the quantum. To do that, each task r, is divided 
in requests q j .  of size Q. 

Clearly, quantum-based allocation introduces an allocation error with respect to the 
fluid flow model. The minimum theoretical error bound is H,  , = ($ + $), where 



Q ,  is the maximum dimension for 7 ,  requests and Q , is the maximum dimension for 
7 ,  requests. 

An important properties of PS schedulers (that directly derives from the GPS definition) 
is that they are ~ ~ r k  corlserving nlgoritlinzs. 

Definition 3.2 An algoritlzrri ir said to be i t w k  conrer~irlg if it enrurer tlznt the CPU 
ir not idle tvhen there are jobs rec& to execute. 

As we will see in the next sections, some algorithms providing temporal protection are 
not work conserving (for example, hard reservation algorithms). 

In the rest of this section, some of the most important PS scheduling algorithms are 
analyzed, showing how they emulate the ideal GPS allocation, and evaluating their 
performance in terms of allocation error and lag. 

3.4.1 WEIGHTED FAIR QUEUING 

The first known Proportional Share scheduling algorithm is Weighted Fair Queuing 
(WFQ), which emulates the behavior of a GPS system by using the concept of ~ir tunl  
time. The virtual time ( ~ ( t )  is defined by increments as follows: 

Each quantum request q;  is assigned a virtual start time S ( q ;  ) and a virtual finish time 
~ ( q ; )  as follows: 

where r ,  k is the time at which request q: is generated and Q ,  A is the request dimension 
(required execution time). Since Q ,  k is not known a priori (a task may release the 
CPU before the end of the time quantum), it is assumed to be equal to the quantum 
size Q (note that the quantum size is the same for all the tasks, hence the z index can 
be removed). Tasks' requests are scheduled in order of increasing virtual finish time, 
and the definitions presented above guarantee that each request completes before its 
virtual finishing time. 



Figure 3.7 WFQ scheclule genetated by the task set of Figure 3 6 



Figure 3.7 shows an example of WFQ scheduling, with the same task set presented in 
Figure 3.6 and considering a quantum size Q = 1. The first quantum begins at time 
0, hence its virtual start time is 0 for both tasks. Since the virtual finishing time of 
the first quantum is 0 + 113 = 113 for task rl, and 0 + 111 = 1 for task 7 2 ,  such a 
quantum is assigned to rl. The virtual start time of the second quantum of task 7 1  is 
max{l/4,1/3} = 113, hence F(qf) = 113 + 113 = 213 and 7 1  is scheduled again. 
In the same way, S(&') = mas{1/2,2/3} = 213, and F(&') = 1. Since the virtual 
finishing time of the two tasks is the same, both rl and 7 2  can be scheduled at time 
t = 2: let us assume that 7-2 is scheduled. As a result, S(q;) = mnx{l. 1/41 = 1 and 
F(q2)  = 2. Since F ( q ? )  < F(q,'), rl is scheduled at time t = 3 and finishes its first 
instance at time t = 4. At this point, the virtual time changes its increase rate to reflect 
the fact that 7 2  remains the only active task in the system ( u ~ ~  = 1 + dc( t )  = dt). 
As a result, when rl activates again at time t = 8, the virtual time c(8) = 5 is equal 
to the virtual finishing time F(q;) = 5 of the latest quantum executed by 7 2 .  Hence, 
the virtual start time of the two competing quanta of 7 1  and 7 2  is the same (5), and the 
schedule repeats as at time 0. 

The WFQ algorithm is one of the first known PS schedulers, and it is the basis for 
all the other PS algorithms. In fact, most of the PS schedulers are just modifications 
of WFQ that try to solve some of its problems. Some of the most notable problems 
presented by WFQ are: 

it needs a frequent recalculation of r?(t); 

it does not perform well in dynamic systems (when a task activates or blocks, the 
fairness of the schedule is compromised); 

it assumes each requests size equal to the maximum value (the scheduling quan- 
tum); in real situations this assumption is not correct. 

In general, the main difference among the various PS schedulers consists in the way 
they define the virtual time, or in some additional rule that can be used to increase the 
fairness in some pathological situations. 

3.4.2 START FAIR QUEUING 

Start Fair Queuing (SFQ) [GGV96] is a proportional share scheduler that reduces 
the computational complexity of WFQ and increases the fairness by using a simpler 
definition of virtual time. The algorithm has been designed to hierarchically subdivide 
the CPU bandwidth among various application classes. Another difference with WFQ 
is that SFQ schedules the requests in order of increasing virtual start time. 



The SFQ algorithm defines the virtual time c(t)  as follows: 

i f t  = O  
if the CPU is idle 

if request qf is executing 

SFQ guarantees an allocation error bound of 2 H ,  , , so it is nearly-optimal. Moreover, 
SFQ calculates c(t)  in a way simpler than that used in WFQ (introducing less overhead) 
and does not need the virtual finish time of a request to schedule it, so it does not require 
any a priori knowledge of the request execution time ( F ( q  f ) can be computed at the 
end of qf execution). 

A Proportional Share algorithm schedules the tasks in order to reduce the allocation 
error experienced by each of them; to provide some form of real-time execution it is 
important to guarantee that lag,  ( t )  is bounded. 

SFQ and WFQ provide an optimal upper bound for the lag (max t{lagz(t)) = Q,), but 
do not provide an optimal bound for the absolute value of the lag. For example, for 
SFQ this bound is mast{layz ( t )  } = Q ,  + f z  C Q,. which depends on the number 
of active tasks. 

3.4.3 EARLIEST ELIGIBLE VIRTUAL DEADLINE 
FIRST 

In [SAWJ+96] the authors propose a scheduling algorithm, called Earliest Eligible 
Deadline First (EEVDF), that provides an optimal bound on the lag experienced by 
each task. 

EEVDF defines the virtual time as WFQ and schedules the requests by virtual finish 
times (in this case called virtual deadlines), but uses the virtual start time (called virtual 
eligible time) to decide whether a task is eligible to be scheduled: if the virtual eligible 
time is greater than the actual virtual time, the request is not eligible. Virtual eligible 
and finish time are defined as follows: 

When a task joins or leaves the competition (activates or blocks), c ( t )  is adjusted in 
order to maintain the fairness in a dynamic system. 



It can be proved that, although the EEVDF algorithm uses the concept of eligible time, 
it is still a work conserving algorithm (in other words, if there is at least a ready task 
in the system, then there is at least an eligible task). 

The minimum theoretical bound guaranteed by EEVDF for the absolute value of the 
lag is Q; for this reason, EEVDF is said to be optimal. EEVDF can also schedule 
dynamic task sets and can use non uniform quantum sizes, so it can be used in a real 
operating system. To the best knowledge of the authors, EEVDF is the only algorithm 
that provides a fixed lag bound. If the lag is bounded, real-time execution can be 
guaranteed by maintaining the share of each real-time task constant: 

C, + 11iaq { l a g ,  ( t ) )  
fZ(t) = 

D 1 

3.5 RESOURCE RESERVATION TECHNIQUES 

A simple and effective mechanism for implementing temporal protection in a real-time 
system is to reserve each task r, a specified amount of CPU time Q ,  in every interval 
P,. Such a general approach can also be applied to other resources different than the 
CPU, but in this context we will mainly focus on the CPU, because CPU scheduling is 
the topic of this book. 

Some authors [RJM098] tend to distinguish between Izad and soft reservations. 

Definition 3.3 A lzardresewafion is an abstracfiorl thatguarmfees the re-e~envdan~ount 
of time fo flze sen>ecl task, bilf a l l o ~ v ~  s~rclz t a ~ k  to evecute at most for Q ,  m i t ~  qf time 
ever? P,. 

Definition 3.4 A ~ q f t  reaenafiorl is a resewation guara-anfeeing flzaf flze task evecutes 
at least for Q, time imifs ever? PI, allo~ving if fo e.xecufe more ( f  there is Jonze idle finze 
a~nilable. 

A resource reservation technique for fixed priority scheduling was first presented in 
[MST94a]. According to this method, a task 7, is first assigned a pair (Q,.  P, ) (denoted 
as a CPU ccipacity reserve) and then it is enabled to execute as a real-time task for Q , 
units of time every P,. When the task consumes its reserved quantum Q , , it is blocked 
until the next period, if the reservation is hard, or it is scheduled in background as a 
non real-time task, if the reservation is soft. At the beginning of the next period, the 



task is assigned another time quantum Q ,  and it is scheduled as a real-time task until 
the budget expires. 

In this way, a task is rerlzciped so that it behaves like a periodic real-time task with 
known parameters (Q,. P,) and can be properly scheduled by a classical real-time 
scheduler. A similar technique is used in computer networks by traffic shapers, such 
as the leaky bucket or the token bucket [Tan96]. 

More formally, a reservation technique can be defined as follows: 

w a reservation RSI' is characterized by two parameters (Q. P ) ,  referred to as the 
r~zaxir~zun~ bidget  and the m e w a t i o n  period; 

a budget q (also referred to as ccipacity), is associated with each reservation; 

w at the beginning of each reservation period, the budget q is recharged to Q; 

w when the reserved task executes, the budget is decreased accordingly: 

w when the budget becomes zero, the reservation is said to be depleted and an 
appropriate action must be taken. 

The action to be taken when a reservation is depleted depends on the reservation type 
(hard or soft). In a hard reservation, the task is suspended until the budget is recharged, 
and another task can be executed. If all tasks are suspended, the system remains idle 
until the first recharging event. Thus, in case of hard reservations, the scheduling 
algorithm is said to be "non work-conserving". 

In a soft reservation, if the budget is depleted and the task has not yet completed, the 
task's priority is downgraded to background priority until the budget is recharged. In 
this way, the task can take advantage of unused bandwidth in the system. When all 
reservations are soft, the algorithm is work-conserving. 

Figure 3.8 shows how the tasks of Fig~lre 3.2 are scheduled using two hard CPU 
reservations RSVl and RSI 2 with Q1 = 2, Pl = 3, Q2 = 1 ,  and P2 = 5, under RM. 
The same figure also shows the temporal evolution of the budgets q l  and q2. Since 
the reservations are based on RM, RSI has priority over RSV2, and task rl starts to 
execute. After 2 time units, 7 1  completes and 7 2  starts executing. At time 3, rL has 
not completed, but its current budget q~ = 0 and the reservation RSI> is depleted. 
Hence, r~ is s~lspended waiting for its budget to be recharged. As we can see, 7 1  does 
not suffer from the overrun of 72. 



Figure 3.8 Example of CPU Reservations implemented ox-er a fixed priority scheduler. 



Figure 3.9 The task set is scheclulable by CPU Reservations implernentecl over EDF 

At the same time, a new period for RSV1 is activated, and budget ql  is recharged 
to 2. Hence, 71 can execute again and complete its instance after one more unit of 
time. Notice that task r l  has missed its deadline at time 3. Moreover, since the task 
has a period of 3, at time 3 another instance should have been activated. Depending 
on the actual implementation of the scheduler and of the task, it may happen that the 
task activation at time 3 is skipped or buffered. In Figure 3.8 we assume that the task 
activation is buffered. Hence, at time 4 the task resumes executing the next buffered 
instance. 

Note that, even if the first instance of rl is "too long", the schedule is equivalent to the 
one generated by RM for two tasks r l  = (2.3) and 7 2  = (1,s). In other words, the 
CPU reservation mechanism provides temporal isolation between the two tasks: since 
rl is the one executing "too much", it will miss some deadlines, but r2 is not affected. 

3.5.1 PROBLEMS WITH TRADITIONAL 
RESERVATION SYSTEMS 

The reservation mechanism presented in the previous section can be easily used also 
with dynamic priority schedulers, such as EDF, to obtain a better CPU utilization. 
However, when using CPU reservations in a dynamic priority system it can be useful 
to extend the scheduler to solve some problems that generally affect reservation based 
schedulers. Hence, before presenting some more advanced reservation algorithms, we 
show a typical problem encountered in traditional reservation systems. 

In particular, a generic reservation based scheduling algorithm can have problems in 
handling aperiodic task's arrivals. Consider two tasks 7 1  = (4,X) and 7 2  = (3,Ci) 
served by two reservations RSI/; = (1, X), and RST.5 = (3,Ci). As shown in of 
Figure 3.9, if theEDFpriority assignment is used to implement the reservation scheme, 
then the task set is schedulable (and each task will respect all its deadlines). However, 
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Figure 3.10 A late arrixal in 72 can cause a deadline miss in 71 

if an instance of one of the two tasks is activated later, the temporal isolation provided 
by the reservation mechanism may be broken. For example, Figure 3.10 shows the 
schedule produced when the third instance of rl arrives at time 18 instead of time 16: 
the system is idle between time 17 and 18, and task 7 2  (which is behaving correctly) 
misses a deadline. 

If correctly used, dynamic priorities permit to fix this kind of problems and better 
exploit the CPU time, as shown in the next section. 

3.6 RESOURCE RESERVATIONS IN DYNAMIC 
PRIORITY SYSTEMS 

To better exploit the advantages of a dynamic priority system, resource reservations 
can be implemented by properly assigning a dynamic scheduling deadline to each task 
and by scheduling tasks by EDF based on their scheduling deadlines. 

Definition 3.5 A schediilirlg deadline d : ,  ir n cl?.rlnrizic deadline assigrled to n job 7, , 
irl order to rclzedzde it by EDE 

Note that a scheduling deadline is something different from the job deadline d , , . which 
in this case is only used for performance monitoring. 

The abstract entity that is responsible for assigning a correct scheduling deadline to 
each job is called aperiodic server. 

Definition 3.6 A sewer i~ a n~echarlisr~z i f ~ e d  fo a ~ ~ i g r z  sclzediding deadlines to jobs in 
order to rclzedzde tlzern ro that rorne propertier jrz~clz ns the rerervation gunrantee) are 
respected. 



Aperiodic servers are widely knownin the real-time literat~lre, [SSL89, LSS87, LRT92, 
TL92, SLS95, SB94, SB96, GB951, but, in general, they have been used to reduce the 
response time of aperiodic requests, and not to implement temporal protection. 

The server assigns each job 7,  , an absolute time-varying deadline dk., which can be 
dynamically changed. This fact can be modeled by splitting each job r ,  , into chmks  
Hz  ,.A. each having a fixed scheduling deadline d:, A .  

Definition 3.7 A chunk H,,, .k  is a yarf  qf tlze job r , . j  clzaracfericed by a~fixecl schedul- 
ing deadline d : ~ j , A .  Each clz~rnk H,. , , .k  is characferi,-ed by an arrival tinze a, , , .k ,  an 
e,xecution time e , . j ~ k  arld a schediilirlg deadlirle. Note tlzat tlze arrival time n , . j ~ o  of the 
first clziink of a job ~ , . j  is eqz~al to the job release tinze: n , ~ j . o  = r , . j .  

3.6.1 THE CONSTANT BANDWIDTH SERVER 

The Constant Bandwidth Server (CBS) is a work conserving server (implementing soft 
reservations) that takes advantage of dynamic priorities to properly serve aperiodic 
requests and better exploit the CPU. 

The CBS algorithm is formally defined as follows: 

w A CBS S is characterized by a budget q' and by a ordered pair (Q ' .  P ' ) ,  where 
Qs is the rerl,er rizarirriz~rri budget and P s  is the rerl,er period. The ratio C s  = 

Q s / P s  is denoted as the senvr  bandwidflz. At each instant, a fixed deadline d f  
is associated with the server. At the beginning d ;  = 0. 

Each served job r, , is assigned a dynamic deadline d ,  , equal to the current server 
deadline d i  . 

w Whenever a served job T , ~ ,  executes, the budget q' of the server S serving 7,  is 
decreased by the same amount. 

w When q' = 0, the server budget is recharged at the maximum value Q ' and a new 
server deadline is generated as d l + ,  = d l  + P'.  Notice that there are no finite 
intervals of time in which the budget is equal to zero. 

A CBS is said to be active at time t if there are pending jobs (remember the budget 
qs is always greater than 0); that is, if there exists a served job T,.,  such that 
r ,  , < t < f , . , .  A CBS is said to be idle at time t if it is not active. 
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Figure 3.11 Simple evalnple of CBS scheduling. 

When a job r, , arrives and the server is active the request is enqueued in a queue 
of pending jobs according to a given (arbitrary) non-preemptive discipline (e.g., 
FIFO, shortest execution time first, or earliest deadline first, if tasks have soft 
deadlines). 

When a job r, , arrives and the server is idle, if q s  > ( d f  - 7 , )Y s  the server 
generates a new deadline d i + ,  = 7 ,  , + P' and q' is recharged to the maximum 
value Q', otherwise the job is served with the last server deadline d i  using the 
current budget. 

When a job finishes, the next pending job, if any, is served using the current budget 
and deadline. If there are no pending jobs, the server becomes idle. 

w At any instant, a job is assigned the last deadline generated by the server. 

Figure 3.11 illustrates an example in which a hard periodic task 7 1  is scheduled by 
EDF together with a soft task 7 2 ,  served by a CBS having a budget QS = 2  and a 
period P" = 7. The first job of r2 arrives at time r l  = 2 ,  when the server is idle. 
Being qs > ( d i  - r l )Vs ,  the deadline assigned to the job is d s  = 7.1 + Ps = 9 and 
qs is recharged at Qs = 2. At time t l  = 6 the budget is exhausted, so a new deadline 
d ~  - - d ;  + P" = 16 is generated and q" is replenished. At time r2 = 7, the second 

job arrives when the server is active, so the request is enqueued. When the first job 
finishes, the second job is served with the actual server deadline ( d q  = 16). At time 
t2 = 12 ,  the server budget is exhausted so a new server deadline d i  = d$ + Ps = 2 3  
is generated and q s  is replenished to Qs. The third job arrives at time 17, when the 
server is idle and qs  = 1  < ( d s  - 73)Vs = ( 2 3  - 17): = 1.71, so it is scheduled with 
the actual server deadline d i  without changing the budget. 

In Figure 3.12, a hard periodic task is scheduled together with a soft task 72 ,  having 
fixed inter-arrival time (T2 = 7) and variable computation time, with a mean value equal 
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Figure 3.12 Example of CBS serving a task \+it11 variable execution time and constant 
inter-arrival time. 

to CL = 2. This situation is typical in applications that manage continuous media: for 
example, a video stream requires to be played periodically, but the decodinglplaying 
time of each frame is not constant. In order to optimize the processor utilization, 72 is 
served by a CBS with a maximum budget equal to the mean computation time of the 
task (Q' = 2) and a period equal to the task period (P' = T2 = 7). 

As we can see from Figure 3.12, the second job of task 7 2  is first assigned a deadline 
d; = 7 2 + PS = 14. At time t2 = 12, however, since qs is exhausted and the job 
is not finished, the job is scheduled with a new deadline d$ = dq + Ps = 21. As a 
result of a longer execution, only the soft task is delayed, while the hard task meets 
all its deadlines. Moreover, the exceeding portion of the late job is not executed in 
background, but is scheduled with a suitable dynamic priority. 

In other situations, frequently encountered in continuous media (CM) applications, 
tasks have fixed computation times but variable inter-arrival times. For example, this 
is the case of a task activated by external events, such a driver process activated by 
interrupts coming from a communication network. In this case, the CBS behaves 
exactly like a Total Bandwidth Server (TBS) [SB96] with a bandwidth C s  = Q s / P s .  
In fact, if C, = Qs each job finishes exactly when the budget arrives to 0, so the server 
deadline is increased of Ps .  It is also interesting to observe that, in this situation, the 
CBS is also equivalent to a Rate-Based Execution (RBE) model [JB95] with parameters 
s = 1. y = T,. D = T,. An example of such a scenario is depicted in Figure 3.13. 

Finally, Figure 3.14 shows how the tasks presented in Figure 3.10 are scheduled by a 
CBS. Since the CBS assigns a correct deadline to the instance arriving late (the third 
instance of rl) ,  7 2  does not miss any deadline, and temporal protection is preserved. 
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Figure 3.13 Example of CBS serx-ing a task with constant execution time and variable 
inter-arri~ a1 time. 
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3.6.2 CBS PROPERTIES 

The proposed CBS service mechanism presents some interesting properties that make 
it suitable for supporting CM applications. The most important one, the irolatiorl 
propert), is formally expressed by the following theorem. 

Theorem 3.1 A CBS ~viflz yaran~efers ( Q s ,  P s )  denlands a Dand~vidflz C s  = Qs/Ps .  

To prove the theorem, we show that a CBS with parameters (Q '. P' )  cannot occupy 
a bandwidth greater than C s  = Q s / P s .  That is, the processor demand g ,  ( t l ,  t s )  (see 
Chapter 1) of the CBS in the interval [ t l ,  t 2 ]  is less than or equal to ( t2  - t l ) Q s / P s .  
That is, we show that 

We recall that, under a CBS, a job r, , is assigned an absolute time-varying deadline 
d l ,  which can be postponed if the task requires more than the reserved bandwidth. 
Thus, each job r, , is composed by a number of chunks H, , A ,  each characterized by 
a release time a , ,  and a fixed deadline d l  , A .  To simplify the notation, we indicate 
all the chunks generated by a server with an increasing index k .  The release time 
and the deadline of the k th  chunk generated by the server will be denoted by cx and 
d k .  respectively. Using this notation, the CBS algorithm can be formally described as 
illustrated in Figure 3.15. 

If ek denotes the server time demanded in 
time of chunk Hk). we can say that 

the interval [a k .  dx]  (that is, the execution 

If q(t)  is the server budget at time t  and f k  is the time at which chunk Hx ends to 
execute, we can see that q ( f A )  = q ( a k )  - eA, while q ( a x + l )  is calculated from q ( f k )  

in the following manner: 

q(ax+1) = { $ 1  if d ~ + ~  was generated by Rule 2 
if dx+1 was generated by Rule 1 or 3. 

Using these observations, the theorem can be proved by showing that: 

g , ( a ~ , . d ~ , )  + q(fx2) 5 ( d A 2  - aAl)C5. 



When job 7, a r r l v e s  a t  t lme r', 

enqueue t h e  reques t  I n  t h e  s e r v e r  queue; 
n = n + l ;  
if (n == 1) / *  ( t h e  s e r v e r  IS I d l e )  * /  

if (rJ  + (C  / Q )  * P >= d ~ )  
/*---------------Rule I---------------*/ 

k = k + l ;  
ak = r J ;  
dk = ak + P ;  
c = Q ;  

else 
/*---------------Rule 2---------------*/ 

k = k + l ;  
ak = r J ;  
di, = dh-1; 
/* c remams unchanged * /  

When job 7, t e r m m a t e s  
dequeue T~ from t h e  s e r v e r  queue; 
n = n - I ;  
if (n I =  0) se rve  t h e  next  job I n  t h e  queue wlth d e a d l m e  dk; 

When job 7, executes  f o r  a t lme u n l t  
c = c - I ;  

When (c  == 0) 
/*---------------Rule 3---------------*/ 

k = k + l ;  
ak = ac tua l - t l rne0  ; 
di, = Clh-1 + P. 
c = Q ;  

Figure 3.15 The CBS algorithm 



We proceed by induction on 11-2 - 11-1, using the algorithmic definition of CBS shown 
in Fig~lre 3.15. 

Inductive base. If in [ t l .  t l ]  there is only one active chunk (11-1 = 11-2 = k ) ,  two cases 
have to be considered. 

Case a: d k  < ax + P .  

Case b: d A  = ax + P' 

If dk = ak + P, then g S ( a k .  d k )  + q ( f k )  = ek + q ( f k )  = Q S .  Hence, in both cases, 
we have: 

Inductive step. The inductive hypothesis 

Q S  

s S ( a ~ . d k l - i )  + q ( f k L - l )  < (dx,-1 - 

is used to prove that 

Q ' 
~ ' ( Q A ~ .  d i , )  + i: ( d ; ,  - 

Given the possible relations between d x  and dx-1, three cases have to be considered: 



di, > d k P l  + P S .  That is, d k  is generated by Rule 3 or Rule 1 when r ,  > d,-1. 

w d A  = dL-l .  That is, d A  is generated by Rule 2. 

w d x ~ l < d k < d k ~ l + P S . T h a t i s , d x i s g e n e r a t e d b y R u l e l w h e n r , < d , - l .  

Case a: dk2  = d k 2 -  1 + P S .  

In this case d L 2  can be generated only by Rule 1 or 3. Adding e A ,  to both sides of the 
inductive hypothesis, we obtain: 

Since d L 2  is generated by Rule 1 or 3. it must be q ( a  A , )  = Q', therefore: 

k 2  Q ' Q ' 
k + ( 2  5 1 - a -  - q ( h - 1 )  + Q' 5 - a i l ) -  + Q' 

k=A 1 
PS PS 

and finally 

If d k 2  = d L Z P 1 ,  then d L 2  is generated by Rule 2. In this case, 



hence 

If d k 2  < & - 1  + P S ,  d k 2  is generatedby Rule 1, so ox,  + !dfkd y PS > d k 2  - 1. hence 
Q ~ ( f x ,  - 1 )  > - o k 2 )  p Applying the inductive hypothesis, we obtain 

from which we have 

Now, being e k ,  = Q' - q ( j k , ) ,  we have: 

but, from Rule 1 and 3, we have d k  = a k  + P S ,  so we can write 

hence 



The isolation property allows us to use a bandwidth reservation strategy to allocate a 
fraction of the CPU time to each task that cannot be guaranteed a priori. The most 
important consequence of this result is that soft tasks can be scheduled together with 
hard tasks without affecting the a priori guarantee even in the case in which soft requests 
exceed the expected load. 

In addition to the isolation property, the CBS has the following characteristics: 

No assumptions are required on the WCET and the minimum inter-arrival time 
of the served tasks: this allows the same program to be used on different systems 
without recalculating the computation times. This property allows decoupling the 
task model from the scheduling parameters. 

w If the task's parameters are known in advance, a hard real-time guarantee can be 
performed (see Section 3.7). 

w The CBS automatically reclaims any spare time caused by early completions 
or late arrivals. This is due to the fact that whenever the budget is exhausted, 
it is always immediately replenished at its full value and the server deadline is 
postponed. In this way, the server remains eligible and the budget can be exploited 
by the pending requests with the current deadline. 

Knowing the statistical distribution of the computation time of a task served by 
a CBS, it is possible to perform a statistical guarantee, expressed in terms of 
probability for each served job to meet its deadline (see Section 9.5). 

3.7 TEMPORAL GUARANTEES 

Resource reservations provide a basic sclzedding n~echarzi~r~z that, thanks to the tempo- 
ral isolation property, can be used in different ways to serve hard or soft tasks providing 
different kinds of guarantees. 

In this section we briefly recall some possible parmzeterJ ussignnlenf policies; note 
that, although most of the presented results are applied to the CBS algorithm (because 
they were originally developed for the CBS), they can be extended to other reservation 
policies. 

The first (and simplest) usage of a reservation algorithm is to use it for serving aperiodic 
tasks so that they do not interfere with the hardreal-time activities. This is the approach 
followed in all the works on aperiodic servers [SSL89, LSS87, LRT92, TL92, SLS95, 
SB94, SB96, GB951. 



Obviously, a single CBS can be used to serve all the soft real-time tasks, but in this 
case it might be very difficult to provide soft real-time guarantees. The best way to 
provide some kind of performance guarantee to soft real-time tasks is to serve each 
task with a dedicated CBS (or CPU reservation). In this way, it is possible to guarantee 
that each task is periodically assigned a given amount of time; if the task parameters 
are not know a priori this is the only performance guarantee that can be performed, but 
if some information is known about the task, more complex guarantee strategies can 
be used. 

Finally, a dedicated server can also be used to schedule hard real-time tasks, which can 
be guaranteed thanks to the hard sclzedillabilih property, expressed by the following 
lemma: 

Lemma 3.1 A hard task 7, ~vi th  yarmi~efer-s (C,, T,) i~ ~c/zedidable O? a CBS with 
pcir-awieterr QS > C, cind PS < T, ifcind only $7, is rchedz~lahle \vitlzout the CBS. 

Proof. 
For any job of task 7,. 1 ,  ,+I - r, , > T, > PS and c ,  , < C, < Qs. Hence, by 
definition of the CBS, each job J ,  , is assigned a scheduling deadline df , = 1 ,  , + Ps 
(since r, , is always greater than di,-,) and it is scheduled with a budget Q i  > C,. 
Moreover, since c , ,  < QS,  each job finishes no later than the budget is exhausted, 
hence the deadline assigned to a job does not change and is exactly the same as the one 
used by EDF. 0 

All the policies described above can be used off-line for assigning reservations param- 
eters during the system design phase, when tasks parameters are known a-priori. But, 
as explained in Chapter I ,  such an a-priori information is often not available and static 
allocation techniques cannot be used. In this case, it is possible to dynamically change 
the reservation parameters as explained in Chapter 8. 

3.8 RESOURCE RESERVATIONS IN OPERATING 
SYSTEM KERNELS 

Resource Reservations have been implemented in various real-time kernels (mainly 
research kernels), starting from Real-Time Mach, and are available in a commercial 
real-time extension of Linux, (LinuxIRK by TimeSys). While most of these systems 



provide CPU reservations as an alternative to classical real-time scheduling algorithms, 
few of them base the whole kernel on the reservation concept and provide reservations 
for all the resources managed by the system. 

3.8.1 REAL-TIME MACH 

Real-Time Mach (RT-Mach) [TNR90] is a real-time extension of the Mach pkernel 
[RBF+89]. developed at the CMU. RT-Mach extends the standard Mach by increasing 
the predictability of the kernel, and providing a real-time threading library, a real-time 
scheduler, and a real-time communication mechanism. 

The predictability of the kernel is increased by using eager evaluation policies (opposed 
to the lazy evaluation policies used by standard Mach) and by substituting the FIFO 
queues contained in the kernel with priority queues (where the priorities are derived 
by the tasks' temporal constraints). As an example of lazy evaluation policy used in 
standard Mach, when a task dynamically allocates some memory, the kernel really 
gives it to the task only when the task accesses the allocated memory. Such a "lazy 
allocation" allows enhancing the kernel efficiency, and enabling some optimizations 
such as copy-on-write, but increases the unpredictability of the system. Hence, RT- 
Mach modifies this behavior by immediately allocating the memory; other similar 
optimizations present in the Mach pkernel have been removed in RT-Mach for similar 
reasons. The real-time threading library coming with RT-Mach implements the periodic 
and sporadic thread models, enabling the user to express the WCET and the period (or 
the minimum interarrival time) for each thread. In this way, RT-Mach can perform 
the admission control and correctly schedule the treads using a Rate Monotonic (or 
Deadline Monotonic) scheduler. Finally, the real-time communication mechanism 
uses priority inheritance [SRL90] to bound the waiting times. 

CPU reservations were added to RT-Mach by Mercer and others [MST94a] to sup- 
port multimedia applications. In particular, the authors realized the lack of temporal 
protection presented by the priority-based RT-Mach scheduler (similar to the problem 
shown in Section 3. l), and implemented a CPU reservation mechanism based on the 
Rate Monotonic algorithm. This was done by enhancing the RT-Mach time accounting 
mechanism to exactly measure the execution time used by each thread (and keeping 
track of the reservation budget) and by implementing an enforcement mechanism. The 
enforcement mechanism downgrades a thread to non real-time when it consumes all 
its reserved time (the thread will be promoted again to real time priority at the be- 
ginning of the next reservation period). The authors argued that to compensate some 
approximations in accounting and enforcement, a fraction of the CPU time must be left 
unreserved, and they estimated this percentage in about 5 - 10%. Since in realistic sit- 
uations the RM utilization bound is about 88% [LSD89], the authors claim that basing 



the reservation mechanism on EDF would not give any sensible advantage with respect 
to RM, and thus they adopted the RM scheduler provided by RT-Mach as a basis for 
their CPU capacity reserves. 

Nowadays, using modern hardware and OS kernels the overhead for accounting and 
enforcement is negligible, hence there are no more reasons for compensating it. As a 
consequence, basing the reservation mechanism on EDF can be a realistic choice. 

3.8.2 OTHER RESEARCH SYSTEMS 

CPU Reservations have also been implemented in other research kernels to support 
predictable CPU allocation in dynamic systems. 

For example, Rialto is a research system developed by Microsoft [JIF+96] that permits 
to mix CPU reservations and other kinds of timing constraints. Rialto was designed to 
combine timesharing and soft real-time in a desktop operating system, and thus uses 
CPU reservations to isolate the different applications. The execution time is reserved to 
nctivitier and monitored at runtime. Activities can be composed by more threads, and 
threads belonging to the same activity share its reserved time in a round-robin fashion. 

Another difference between Rialto CPU reservations and traditional ones is that in 
Rialto reservations are continuously guaranteed. That is to say, if an activity has a 
(Q.  T )  reservation, then for every time t the activity will run for at least Q units of time 
in the interval ( t .  t + T ) 2 .  This result is impossible to obtain using a priority scheduler, 
and in fact Rialto uses a table driven schedule that is computed when a reservation is 
created and is repeated over time. 

Moreover, Rialto provides time conrtrnirltr: a time constraint is a tuple (s. c. b ) ,  indi- 
cating that a thread requires to execute for a time c, starting at time s,  and terminating 
before b. Based on the thread's activity reserved time on the static schedule, and on the 
available spare time, Rialto can guarantee the time constraint or reject it. If the time 
constraint is accepted, the activity's threads are scheduled so that it is respected (the 
scheduling algorithm used inside the activity is based on EDF). 

Another system supporting resource reservations is HARTIK [But93b], an experimen- 
tal real-time kernel developed at the ReTiS Lab of the Scuola Superiore S. Anna of 
Pisa, to support real-time and control applications running on conventional PC hard- 
ware (based on Intel x86 processors). Like RT-Mach and Rialto, HARTIK permits 
to explicitly express the tasks' temporal constraints, implements an on-line admission 

"n a traditional reservation. this is d i d .  only for t = k T  + A .  where t o  is a fixed offset 



test, and dynamically create and destroy processes. Moreover, HARTIK also provides 
some unique features that are rarely found all together in other kernels. They include 
a support for both periodic and aperiodic processes, the possibility to mix hard, soft, 
and non real-time tasks, the implementation of resource sharing protocols (based on 
SRP [Bak91]), and the presence of a non-blocking communication mechanism (the 
CAB [But93b]) for exchanging data among periodic tasks having different rates. The 
HARTIK scheduler is based on EDF. 

The kernel was later extended to support multimedia applications through the CBS, 
which was explicitly designed to efficiently schedule periodic and aperiodic soft tasks 
with unknown execution times [ABOO]. Nowadays, the CBS can be used in HARTIK 
to schedule both hard and soft real-time tasks, or to reserve a fixed fraction of the CPU 
bandwidth to non real-time tasks to prevent starvation. Moreover, the CBS is used to 
schedule all the drivers' tasks so that it is not necessary to adjust the drivers' WCET 
estimation on every new machine the first time a driver runs on it. 

Another real-time kernel developed at the Retis Lab of Scuola Superiore S. Anna 
of Pisa is SHaRK [GAGBOl]. ShaRK is an evolution of HARTIK and has been 
designed to easily implement new scheduling algorithms in the kernel as ~ched~rlirlg 
r~zocldes. The CBS is still provided as one of the standard scheduling modules, and 
other reservation mechanisms can be easily added, hence SHaRK provides full support 
for CPU reservations. 

A similar concept (easy implementation of new scheduling algorithms) is proposed by 
RED Linux, that modifies the 2.2 Linux kernel to provide high-resolution timers, low 
kernel latency, and a modular scheduler. This latest feature permits to easily implement 
CPU reservations in RED Linux. 

3.8.3 RESOURCE KERNELS 

Extending the concepts presented by the kernels described above, it is possible to 
consider resource reservations as an abstraction for decoupling the applications from 
the scheduling algorithm. Hence, applications only need to express their resource 
requirements in terms of reservations (Q, T) (plus an optional parameter D indicating 
a relative deadline), so that the kernel can perform an admission test and schedule tasks 
in the proper way. This is the resource cerltric approach taken by Resource Kernels 
(RK) [RJM098]. 

A resource kernel is based on the Resource Sef  abstraction, which describes all the 
resources that can be used by one or more tasks. A resource set may include multiple 
reservation types (for example, a CPU reservation, a network reservation, and a disk 



reservation), and all the tasks attached to the resource set will be allowed to use those 
reservations. Hence, in order to be guaranteed to execute in a proper timely fashion, a 
task must create a resource set, create the proper resource reservations expressing its 
requirements, connect them to the resource set, and then attach itself to the resource 
set. 

The RK concept was initially implemented in a modified version of RT-Mach, but it is 
fairly general [OR99], and has been, for example, ported to Linux [OR98]. LinuxRK 
provides high-resolution timers and an accurate accounting mechanism, and imple- 
ments the resource set abstraction, CPU reservations (based on RM, DM, or EDF), 
network reservations, and disk reservations. 

A commercial version of Linux/RK is distributed by TimeSys as TimeSys Linux 
[Tim03], which adds some additional feature (such as more predictable kernel ser- 
vices) to the original RK. 



MULTI-THREAD APPLICATIONS 

Computers are powerful enough to run several applications at the same time, each 
consisting of multiple concurrent activities. In this chapter we consider the problem of 
supporting multiple real-time applications in the same computing system, so that each 
application can be handled by its own scheduling policy and analyzed independently 
of the others. 

4.1 THE THREAD MODEL 

The threadmodel of concurrent programming is very popular andit is supported by most 
operating systems. In this model, concurrency is supported at two levels: processes and 
threads. Each process has its own address space and processes communicate mainly 
exchanging messages by means of operating system primitives. Creating a process is 
an expensive operationbecause it involves a lot of steps, like creating the address space, 
setting up the file descriptors, etc. Moreover, context switching among processes is an 
expensive operation. 

A process can be multi-threaded, that is, it can consist of several concurrent threads. 
Different threads belonging to the same process share address space, file descriptors, 
and other resources. Since threads belonging to the same process share the address 
space, the communication is often realized by means of shared data structures protected 
by mutexes. Creating a new thread is far less expensive than creating a new process. 
Context switching among threads of the same process is faster. 

The thread model is supported by all general purpose operating systems because it has 
a lot of advantages with respect to a pure process model. The designer of a concur- 
rent application, in fact, can structure the application as a set of cooperating threads, 
simplifying the communication and reducing the overhead of the implementation. 



When designing a concurrent application, in which tasks have to cooperate tightly and 
efficiently, the thread model is the most suited. As an example, consider a web server 
that can serve many clients at the same time. We can structure the program as one main 
thread that waits for new connections, and one active thread for each client. Another 
example is an MPEG player that plays streams coming from the network: a typical 
design structure for this application consists of a thread that waits for new data from the 
network and writes them into a buffer; a second thread that periodically reads the video 
frames and the audio data from the buffer, decodes and a displays them; and a third 
thread that waits for user commands. All the three threads interact tightly: therefore, 
communication and scheduling must be fast and efficient. 

Classical hard real-time systems usually consist of periodic or sporadic tasks that tightly 
cooperate to f~llfill the system goal. For efficiency reasons, they communicate mainly 
through shared memory, and appropriate synchronization mechanisms are used to reg- 
ulate the access to shared data. Since all tasks in the system are designed to cooperate, a 
global schedulability analysis is done on the whole system to guarantee that the tempo- 
ral constraints will be respected. There is no need to protect one subset of tasks from the 
others. Therefore, we can assimilate a hard real-time system to a single multi-threaded 
process where the real-time tasks are modelled by threads. 

In general purpose operating systems, many processes are active at the same time, and 
they conlpete for the processor and other hardware resources. Therefore, two important 
goals of any general purpose operating system are to regulate the competition among 
the processes, allowing a fair slzare of the system resources to every process, and to 
protect each process from the interferences of the others. 

Summarizing, in multi application systems: 

Processes are developed independently. They must be protected from each other 
to prevent reciprocal interference. If one process fails, the other process must not 
be affected. They compete for the system resources, so the global scheduler has 
to regulate such a competition to ensure fairness. 

w Threads are designed and developed together. They cooperate for producing the 
application's results. If one thread fails, the whole application may fail. 

4.1.1 MULTI-THREADED REAL-TIME 
APPLICATIONS 

If some sort of real-time execution has to be supported in general-purpose operating 
systems, multi-threaded programming must be taken into consideration. According to 



Multi-thread Applicatiorzs 

the multi-thread model, in this chapter we assume that real-time tasks are implemented 
as threads, and a classical real-time application as one single multi-threaded process. 
Therefore, a real-time application is a process that can be multi-threaded, that is, it can 
consists of many real-time tasks. In the remainder of this chapter, the terms thread and 
task will be used as synonyms, as the terms application and procerr. 

A user that wants to execute (soft) real-time applications in a general-purposeoperating 
system would like to have the following nice features: 

1. It should be possible to assign each real-time application a~fmcfion of the sys- 
tem resources, so that it executes as it were executing alone in a slower ~>irfunl 
processor; 

2. Each application should receive execution in a timely manner, depending on its 
real-time characteristics (e.g., the tasks' deadlines); 

3. Anon real-time application should not be able to disrupt the allocation guaranteed 
to real-time applications. 

Such properties can be very well supported through any resource reservation mech- 
anisms, such the ones described in Chapter 3. However, in the case of multi-thread 
systems, the resource reservation mechanism must be applied not at the task level, but 
at the application level. This poses many problems, as we will see in the next sections. 

4.1.2 CUSTOMIZED SCHEDULING 

Figure 4.1 illustrates an example of a multi-thread real-time operating system. An 
interesting feature would be the possibility of specifying a local sclzedider for the ap- 
plication's threads. For example, Application A could specify a non-preemptive FIFO 
scheduler, Application B could specify a Round Robin policy, whereas Application C 
a fixed priority scheduler. 

Therefore, in this model, we distinguish two levels of scheduling. At the higher level, a 
global sclzedider selects the application to be executed on the processor and, at a lower 
level, a local sclzeduler selects the task to be executed for each application. Such a 
two-level scheduling scheme has two main advantages: 

w each application can use the scheduler that best fits its needs; 

w legacy applications, designed for a particular scheduler, can be re-used by simply 
re-compiling, or at most, with some simple modification. 
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Figure 4.1 A multi-thread operating system: each application (or process) consists of one 
or more threads. In acldition. each application can ha\-e its own schecluling algorithm. 

The two-level approach can also be generalized to an arbitrary number of levels. In 
the literature, this class of systems is referred to as hielnrchical sclzedz~lirg sclzerne. 
In this chapter, however, we will consider only two levels, since this model is readily 
available in most operating systems, as discussed in the previous section. 

As an example, consider an engine control system in the automotive domain. We can 
distinguish two sets of activities: 

Aperiodic activities, such as the one triggered by the crnrlk angle refisor. In this 
task, the time between two consecutive activations is variable and depends on 
the rotations per minute of the engine. Therefore, the activity is triggered by an 
interrupt at a variable rate. Probably, the best way to schedule such an activity is 
by an on-line algorithm, under fixed or dynamic priorities. 

Periodic activities. Many activities in a control system are periodic, and must 
be activated by a timer. For example, in automotive applications, most systems 
are connected to other electronic boards in the car through a Time Triggered 
network, which requires precise timing. Therefore, this second set of activities 
are best handled with an off-line table-driven scheduler, executed according to a 
time-triggered paradigm [KDK+89]. 



Multi-thread Applicatiorzs 

If we are forced to use a single scheduling paradigm for the whole system, we must 
either reduce the two sets of activities to periodic tasks, scheduling them by a time- 
triggered paradigm, or re-program the second set of activities to be handled by an 
on-line priority scheduler. Both solutions require some extra programming effort and 
are not optimal in terms of resource usage. The best choice would be to program the two 
sets of activities as two distinct components, each one handled by its own scheduler, 
and then integrate the two components in the same system. 

A similar problem arises when dealing with real-time systems with different criticality, 
because different scheduling paradigms are used for hard and soft real-time activities. 
Again, a way of composing such activities would be to implement them as different 
components, each one handled by its own scheduling algorithm. 

Another motivation for composing schedulers is to have the possibility of re-using 
already existing components. Suppose we have two components consisting of many 
concurrent real-time tasks, one developed assuming a fixed priority scheduler, and 
one developed assuming a Round Robin scheduler. If we want to integrate the two 
components in a new system and we cannot go back to the design phase (for example 
for cost reasons), we need a method for combining and analyzing the two components 
together, ~vithoilf  c l z m g i ~ ~ g  tlze sclzedillirlg algorithn~s. 

4.1.3 SCHEDULING MULTI-THREADED 
APPLICATIONS 

Traditional real-time schedulability analysis cannot be directly applied to independently 
developed multi-threaded applications. For example, consider an application that runs 
on an open system with a fixed priority local scheduler: we would like to know whether 
the application will meet its temporal requirements. If we use traditional hard real-time 
scheduling techniques, it becomes very difficult to analyze the system. First of all, in 
order to apply a global schedulability analysis, we should know how many applications 
are in the system and their temporal characteristics; even with this information, the 
schedulability analysis is not trivial, because the system includes several applications 
with different local schedulers. 

If hard and soft real-time applications are mixed in the same system we have an ad- 
ditional problem: if the system does not provide temporal protection, a non-critical 
application could execute longer than expected and starve all other applications in the 
system. 

In order to validate each application independently, we need to use a resource reserva- 
tion mechanism and provide temporal protection. Moreover, the schedulability analysis 



is greatly simplified, because we only need to take into account one application and 
one scheduling algorithm at a time. To use this approach, we have to assign each 
application a fraction of the processor utilization, as explained in Chapter 3. 

Now the question is: what is the minimum fraction of processor that must be reserved 
to an application in order to guarantee its temporal requirements? An intuitive solution 
would be to assign each application an amount of resource equal to the utilization of 
the application tasks. For example, if the application tasks have a total maximum load 
of 0.3, we can assign 30% of the processor to the application. Indeed, if we use a 
scheduler that provides a perfect abstraction of a virtual dedicated processor whose 
speed is a fraction of the shared processor speed, then this approach is correct. One of 
such mechanisms is the GPS (General Processor Sharing) policy, described in Section 
3.3. 

Unfortunately, this solution is not feasible, as the GPS cannot be implemented in prac- 
tice. All schedulers that can be implemented can only provide "imperfect" abstractions 
of the virtual processor. Any scheduler that supports temporal protection (see Chapter 
3) provides at least one parameter that specifies the "granularity" of the allocation. For 
example, in Proportional Share algorithms (like EEVDF, described in Section 3.4.3) 
we must specify the system quantum; with the Constant Bandwidth Server (CBS) de- 
scribed in Section 3.6.1, we must specify the server period. The smaller the granularity, 
the closer the allocation of the resource to that of the ideal GPS algorithm. However, a 
small granularity implies a large system overhead. For example, in Proportional Share 
algorithms we have exactly one context switch every quantum boundary. With CBS, 
small periods imply a large number of deadline recalculations and queue re-orderings. 
Thus, to contain runtime overhead, the "granularity" should not be too small. 

On the other hand, a coarse granularity of the allocation could lead to unfeasible 
schedules. An example of such a problem is illustrated in Fig~lre 4.2. In this example, 
the system consists of two applications A1 and A> Application A1 comprises two 
sporadic tasks, 7 1  with computation time C1 = 1 and minimum interarrival time 
Tl = 15; 7 2  with computation time C2 = 1 and minimum interarrival time T2 = 5. 
The total utilization of application A1 is Lj = 0.2. Application A2 is non real-time 
and consists of a single job, that arrives at time 0 and requires a very large amount 
of execution time (for example, it could be a scientific program performing a long 
computation). 

In this example, each application is served by a dedicated CBS. Application A 1 is 
served by S1, with a capacity Q = 1 and a period P = 5. Application A2 is served 
by S2. with Q = G.4 and P = 8. The dashed arrows represent the deadlines of the 
servers, whereas the solid arrows are the deadlines of the jobs. 
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Figure 4.2 Problerns with the time granularity of the resource allocation 

When task 71 arrives at time 0, the server S1 is activated and, having the shortest 
deadline, it is selected to execute. When task 7 2  arrives at time 1, the server budget is 
already depleted. Therefore, the first instant at which 7 2  can be scheduled is t = 7.1, 
after the task's deadline. 

Although the example is based on the CBS algorithm, the same thing happens with all 
resource reservation mechanisms presented so far. 

There are two solutions to making application A 1 schedulable: assigning the server a 
larger share of the processor or assigning it a smaller period. For example, if all arrival 
times are integer numbers, by assigning S1 a period of P1 = 1, the above system 
becomes schedulable. The resulting schedule is shown in Figure 4.3. Note that there 
are a large number of context switches. 

Another way to make the system schedulable is to increase the budget of application 
-A1. If we let PI = 5, we can make the system schedulable by raising the budget to 
Q1 = 2. The resulting schedule is shown in Figure 4.4, and there are definitely less 
context switches. However, A1 was assigned a bandwidth twice as much as before, 
"wasting" processor resources that could be assigned to other applications. Deciding 
which approach is better clearly depends on the overhead introduced by the algorithms 
and on the context switch time. 

To implement a two-level scheduling scheme, the following problems need to be ad- 
dressed: 



Figure 4.3 Solution a): reducing the granularity. 
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Which global scheduling algorithm can be used to allocate the processor to the 
different applications? 

Given the global scheduling algorithm and the application timing requirements, 
how to allocate the processor share to the applications so that their requirements 
are satisfied? 

Given the global scheduling algorithm and the processor share assigned to the 
applications, how can the schedulability be analyzed? 

Some solutions to the problems stated above are presented in the next sections. 

4.2 GLOBAL APPROACHES 

In this section we will present two algorithms that take a global approach to the hierar- 
chical scheduling problem. The Deng and Liu's [DLS97, DL971 was the first to tackle 
the problem of hierarchical scheduling in open systems, where there is little a-priori 
knowledge about the application requirements. The Bandwidth Sharing Server (BSS) 
[LB99, LCBOO] was later proposed to improve the performance of the first algorithm. 

The approach followed by these two algorithms is similar and only differs for the way the 
system scheduler is implemented. In both cases, the system scheduler takes advantage 
of the knowledge that tasks have about the budget assigned to each application. In 
Deng and Liu's algorithm, the global system scheduler requires the knowledge of the 
execution time of each task instance, whereas in the BSS the global scheduler requires 
the knowledge of the deadlines of the application tasks. 

Other approaches will be discussed in Section 4.3, which do not require any information 
about the behavior of the applications. 

4.2.1 THE DENG AND LIU'S ALGORITHM 

The concept of oyerl rysfern was first introduced by Deng and Liu [DLS97, DL971. 
Two main properties characterize an open system: each application can be validated 
independently and can be dynamically activated in the system. Unlike closed systems, 
where the temporal behavior of the system can be completely characterized a priori, 
in a open system it is impossible to perform an off-line schedulability analysis for the 
entire system, since we do not how many applications will be present at every instant 
of time. 



According to the model previously described, an application consists of a set of tasks 
(periodic or sporadic) and a local scheduler. Many applications can coexist in the same 
system, and a global system scheduler allocates the processor to each application task. 

The authors distinguish the following types of application: 

Non-preemptive applications. In this case, the application tasks are considered 
locally non preemptive. In other words, the task selected for execution by the 
local scheduler cannot be preempted by other tasks of the same application, but it 
can be preempted by tasks of other applications. 

Preemptive predictable applications. They are applications in which all the schedul- 
ing events are known in advance, as for the case of applications consisting of 
periodic real-time tasks. 

Preemptive non-predictable applications. They are those in which it is not possible 
to know all the scheduling events in advance. Applications containing one or more 
sporadic tasks belong to this category. 

Each application category is handled by a different scheduling algorithm and requires 
a different type of guarantee. 

Given this model, the authors proposed a scheme involving an on line acceptance test 
and a dynamic on line scheduler. When an application A ,  wants to enter the system, 
it must declare its quality of renice requirements in terms of desired utilization C,.  
If there is enough free bandwidth to satisfy the new requirements, the application is 
accepted, otherwise it is rejected. 

According to this algorithm, each application A ,  is assigned a dedicated server S, with 
a maximum utilization factor C, .  The sum of all server's bandwidths cannot exceed 
I .  Each server keeps track of a current budget q ,  and a deadline d l ,  which are both 
initialized to 0. The server can be eligible or non eligible, depending on the value 
of variable e l ,  also called eligibilih time. Initially, e l  = 0 and the server is eligible. 
Server S, is eligible at time t if t > e,. All eligible servers are scheduled by the global 
scheduler which is essentially EDF: the eligible server with the shortest deadline is 
executed by the global system. 

The server dedicated to each application is the Constant Utilization Server (CUS) 
[DLS97], which is a variant of the Total Bandwidth Server (TBS) [SB96] proposed 
by Spuri and Buttazzo. Since the behavior of the CUS server differs for the three 
application categories, its details will be described in the corresponding sections. 
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NON-PREEMPTIVE APPLICATIONS 

The CUS algorithm updates the server variables according to the following rules: 

I .  If a task of application A, arrives at time t ,  requiring a computation time c,:  

w If the local scheduler queue is empty (i.e., no other task in the application is 
active and the application is currently idle), and the server is eligible, then 
q, + c, and d, + rnax(t, d l )  + %. Moreover, the server is inserted in 
the global EDF queue. Notice that the computation time c ,  of the task is 
required to compute the server deadline. 

If the local scheduler queue is non-empty or the server is not eligible, the 
task is inserted in the ready queue of the local scheduler until it becomes the 
first in the queue and the server is eligible. 

2. If a server is selected for execution by the global scheduler (because it is the server 
with the earliest deadline), it starts executing the corresponding task and decreases 
the budget q, accordingly. 

3. A server is allowed to execute until its budget is equal to 0 or until the task finishes. 
If the task finishes before the budget is depleted, the server eligibility time e ,  is 
set to d, and the server becomes non eligible. If the budget is depleted before 
the task finishes executing, an exception is raised to the application. What to do 
in this case is left unspecified and taking the most appropriate action is up to the 
application responsibility. 

As an example of use of the CUS algorithm, consider a system consisting of two 
applications: A1, consisting of two periodic tasks, rl = (1,s) and 7 2  = (2,12), and 
A2, consisting of a single periodic task 7 3  = (4.8).  Each application is handled by a 
CUS with bandwidth C1 = C2 = 0.5 and is scheduled by a non preemptive EDF local 
scheduler. 

Figure 4.5a illustrates the schedule generated by executing application A 1 on a ded- 
icated processor with speed 0.5. The upward arrows denote the arrival times of the 
two tasks, whereas the deadlines are not shown as they coincide with the arrival times. 
Figure 4.5b illustrates the schedule generated for the two applications by the CUS al- 
gorithm. Downward arrows denote the deadline of server S l .  We now analyze the first 
scheduling events: 

At time t = 0, all tasks are ready to execute. The local scheduler of application A 1 

chooses 71 to be executed. Since e l  = 1, the server deadline is set to dl  = 2 and 
the budget ql = 1. Similarly, the deadline of server S2 is set to dl = 4/C2 = 8 
and q2 = 4. Hence, the global EDF scheduler selects server S1 to be executed. 



Figure 4.5 Example of scheclule of a lion preemptive application .Al by the CUS algorithm: 
a) schedule of A1 on a dedicated processor: b) schedule generated hy CUS on the shared 
processor. 

w At time t = 1, task has completed. The eligibility time of S1 is set to el = 

dl = 2, and server S1 is not eligible until time es. 

w Server S2 executes for 1 timeunit. Then, at time t = 2, server S1 becomes eligible 
and the next task in the queue is selected. As a consequence, the server variables 
are updated as follows: dl  t dl + c2/C1 = G, ql t c~ = 2. S1 is now the 
earliest deadline server, so it preempts server S2. Notice that, while application 
A1 is nonpreemptive, the system as a whole is preemptive, as a server can preempt 
the others. 

At time t = -l task TZ completes. Therefore, e l  = dl = 6. Server S1 is not 
eligible and server S2 can execute. Notice that S1 will be non eligible until time 
t = 6 even though task rl becomes active at time t = 5 .  

Notice that the deadline of server S1 is always less than or equal to the deadline of 
all the tasks that are c~lrrently being executed. Actually, by comparing Figures 4.523 
and 4Sb,  it is possible to see that the server deadline is n l tvn~s  equal to tlzejfiliishirlg 
time of the tnrk currently ereciited irl the dedicated processor. This is an interesting 
property of the CUS algorithm for non preemptive applications that is used to prove 
the following important theorem [DLS97]. 
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Theorem 4.1 If a rzon pl-eenzpfive ayylmifiorz A, 15 ~checl~rlable on a dedicafecl pro- 
ceJsor wiflz  peed C,, flzen i f  1s sclzedulable 1~1th a CUS Jenvr 1~1th a Darzcl~~iclflz C,. 

PREDICTABLE APPLICATIONS 

The CUS algorithm presented above has a limited applicability, since it requires the 
local scheduling algorithm to be non-preemptive. In fact, Deng and Liu showed that, 
if a preemptive application is schedulable on a dedicated slower processor of speed C,, 
it would require a server with bandwidth as large as 1 to be scheduled on the shared 
processor! 

To overcome this limitation, Deng and Liu consider predictable and non predictable 
applications. In predictable applications, the operating system knows, at each time t ,  
the next instant at which a scheduling decision must be taken for the application. For 
example, predictable applications are those consisting of periodic real-time tasks with 
known worst-case execution time. For these applications, Deng and Liu proposed to 
modify the CUS algorithm as follows: 

Let t be an instant at which a scheduling decision must be taken for application 
A,, and let next,  ( t )  be the next of such instants; 

Let T,, be the task to be scheduled in application A, and let C, be the share of 
processor reserved for application A,. Let c,, be the remaining computation time 
required by r,, at time t .  

The server deadline is set equal to 

The server budget is set equal to: 

q2 = (4 - t)l/T, 

The server is inserted in the global EDF queue and the global scheduler is invoked; 

If the budget of the application goes to 0, or the task completes, the server replen- 
ishment time is set equal to d l .  

Then, Theorem 4.1 can be restated as follows. 

Theorem 4.2 Ifapplicatiorl A, is norl pl-eernpti~,e ol-predictable, ard i f  is schediilable 
or1 a dedicated pl-ocessol- ,tit11 rpeed C,, flierl it is rclzedz~lable ,tit11 a CUS rel-vel- ,tit11 
a Dand~~ idflz L,. 



NON PREDICTABLE APPLICATIONS 

When dealing with non predictable applications (like those including one or more spo- 
radic tasks) it is not possible to know in advance the next instant at which a scheduling 
decision must be taken by the local preemptive scheduler. To solve this problem, Deng 
and Liu proposed to use a quantum t. The idea is to compute the server budget and 
deadline as follows: 

'72 
q, = min(c,,. i - C:). d, = 

The smaller the t, the higher the number of budget recalculations. However, the smaller 
the i, the smaller the difference between the utilization of the server and the speed of the 
slower dedicated processor. The problem is very similar to the one described in Figures 
4.2,4.3 and 4.4. Actually, it is easy to see that in this case the CUS algorithm becomes 
very similar to the CBS algorithm. Computing the maximum error as a function of the 
quantum t is not trivial and depends on the application characteristics. We remand to 
the original paper [DL971 for more details on the matter. 

EXTENSIONS 

Deng and Liu's approach has been extended by Kuo and Li [KL99]. who presented a 
model in which the global scheduling strategy is based on fixed priorities together with 
a deferrable server or a sporadic server [SLS95, LSS87, SSL891. Each application can 
be handled by a dedicated server with capacity Q ,  and period P,. To achieve maximum 
utilization, the following conditions must be satisfied: 

The period of each server must be a multiple or a divisor of the periods of all other 
servers in the system; 

w The period of all the tasks must be multiple of the period of the server. 

Kuo and Li also addressed the problem of sharing resources among tasks of differ- 
ent applications. Each task is allowed to share resources through mutually exclusive 
semaphores under the Priority Ceiling Protocol [SRL90]. This introduces potential 
blocking for a task accessing a resource locked by a task in another application. There- 
fore, it is necessary to use a global scheduling condition that takes into account such a 
blocking time. As a consequence, the isolation properties cannot be guaranteed as in 
the case of independent applications. 

This algorithm has the advantage of not requiring the knowledge of the worst case 
execution time of all application tasks. However, the conditions on the periodicity of 
the server are quite strong. As a consequence the algorithm is not flexible enough to 
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be used in an open system. Nevertheless, this algorithm was the first one addressing 
the problem of scheduling an application through a dedicated periodic server, as the 
deferrable server algorithm. In Section 4.3 we will see other algorithms that extend 
and generalize this approach. 

CONCLUDING REMARKS 

Deng and Liu were the first considering the problem of hierarchical scheduling in open 
systems. They correctly identified the conditions under which an application that is 
schedulable on a dedicated slower processor, can be scheduled in the shared processor 
together with other applications. However, their approach has some limitations. First 
of all, it requires the knowledge of the worst-case execution time of each task. Al- 
though this assumption is reasonable for hard real-time applications, it is quite strong 
in open systems, for the reasons explained above. The second limitation is that the 
schedulability is possible only under certain restrictive conditions: non preemptive 
applications, predictable applications, or non predictable applications (within a given 
error). The algorithm presented in the next section overcomes such limitations and 
provides precise guarantees also to non predicable applications. 

4.2.2 THE BANDWIDTH SHARING SERVER 

The Bandwidth Sharing Server (BSS), proposed by Lipari et al. [LB99, LipOO, LCBOO] ' , 
is a special kind of server that is able to handle multiple tasks. Its advantage with re- 
spect to Deng and Liu's algorithm is that the BSS does not require applications to obey 
any particular rule. However, it does require application tasks to be real-time, with a 
relative deadline D ,  that can be hard or soft. 

Each application A, is handled by a dedicated cipplicatiorl serl,er S, and is assigned a 
processor share C,, with the assumption that the sum of the shares of all the applications 
in the system cannot exceed 1. The server maintains a queue of ready tasks: the ordering 
of the queue depends on the local scheduling policy. 

Each time a task is ready to be executed in application A,,  the server S, calculates a 
budget B and a deadline d for the entire application. The active servers are then inserted 
in a global EDF queue, where the global scheduler selects the earliest deadline server 
to be executed. It will be allowed to execute for a maximum time equal to the server 
budget. In turn, the corresponding server selects the highest priority task in the ready 
queue to be executed according to the local scheduling policy. 

'111 [LCBOO] the al, mo~ithm has heen called PShED 



The server deadline is assigned by the server to be always equal to the deadline of the 
earliest-deadline task in the application. Notice that the task selected to be executed is 
chosen according to the local scheduler policy and might not be the earliest deadline 
task. 

LIST OF RESIDUALS 

To calculate the budget, every server uses a private data structure called l i ~ t  ofre~iduals .  
For each task of an application A,, this list G, contains one or more elements of the 
following type: 

1 = (B .d)  

where d is the task's deadline and B is the budget available in interval [a. dl (where a 
is the task's arrival time); that is, the maximum time that application A, is allowed to 
demand in [a. dl. 

Thus, an element 1 specifies for the interval [a, dl the amount of execution time available 
in it. The goal of the server is to update the list such that in every interval of time the 
application cannot use more than its bandwidth. From now on, symbol 1 , ( k )  will denote 
the element in the k-th position of list C , .  

List C, is ordered by non-decreasing deadlines d. For the list to be consistent, the 
budgets must be assigned such that they are non-decreasing. Intuitively, this means 
that the total execution time allowed in an interval is never smaller than the execution 
time allowed in any contained interval. 

The server assigns the application apair (budget, deadline) corresponding to the element 
1 = (B, d) of the earliest deadline task in the application, regardless of the local 
scheduling policy. Only in the case the local scheduling policy is EDF, this element 
corresponds to the first task in the ready queue. 

Two main operations are defined on this list: aclcling a new element and ~rydafing the 
list after some task has executed. 

ADDING A NEW ELEMENT 

A new element is created and inserted in the residual list when a newly activated task 
becomes the earliest deadline task among the ready tasks in the application. Let d, 
be its deadline: first, the list is scanned in order to find the right position for the new 
element. Let k  be such a position, that is: 
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Figure 4.6 Cornputation of B, 

Now, the budget B, is computed as: 

where C, is the bandwidth (share) assigned to application A ,  and Dl  is the task's relative 
deadline. At this point, the new element is completely specified as 1 = (B,. d,) and 
can now be inserted at position k, so that the k-th element becomes now the (k + 1)-th 
element. and so on. 

The basic idea behind Equation (4.1) is that the budget for the newly arrived task must 
be constrained such that in any interval the application does not exceed its share. A 
typical situation is shown in Fig~lre 4.6: when at time t task 7 ,  becomes the earliest 
deadline task, the algorithm must compute a new budget: it must not exceed the share 
in interval [a,. d,], which is D, Cz;  it must not exceed the share in interval [a A-1. d,] 
which is BA -1 + (d, - dA -1)G , and must not exceed the share in interval [a A. dA] 
which is Bk . It can be shown that, if B, is the minimum among these values, then the 
application will not use more than its share in any other interval. 

UPDATING THE LIST 

Every time an application task is suspended or completes, the corresponding list must 
be updated. It could happen for any of the following reasons: 

w the task has finished execution; 



w the budget has been exhausted; 

the application has been preempted by another application with an earlier deadline. 

Then, the algorithm picks the element in the list corresponding to the actual deadline 
of the server, say the k-th element, and updates the budgets in the following way: 

1 j > k  B , = B , e  

1 j < k  A E, > EL - ~-erno~,e elenzent 1, 

DELETING ELEMENTS 

We also need a policy to delete elements from the list whenever they are not necessary 
any longer. At time t ,  element 1 ,  ( k )  can be deleted if the corresponding task's instance 
has already finished and 

w either d k  < t ;  

w o r E k > ( d k - t ) C z .  

It can be seen from Equation 4.1 that in both cases element 1 ,  ( k )  is not taken into 
account in the calculation of the budget. In fact, suppose that element 1 ,  ( j )  is being 
inserted just after 1 ,  ( k ) .  Then 

D,G = ( d ,  - t)L, < Bx + ( d l  - d x ) L ;  

and Bk + ( d l  - d k ) L ;  cannot be chosen in the minimum. Suppose now that element 
1 ,  ( 3 )  is being inserted just before 1 ,  ( k ) .  Then 

D]L, = ( d l  - t )Y ,  < ( d k  - t)L, < Ex 

and EL cannot be chosen in the minimum. Since l , (k)  cannot contribute to the calcu- 
lation of any new element, then it can be deleted safely. 

EXAMPLE 

To clarify the mechanism, consider the example in Figure 4.7, in which two applications 
are scheduled by the BSS algorithm: application A1 consists of two tasks, rll and 6 
and it is served by a server with a bandwidth of 0.5 and with a Deadline Monotonic 
scheduler. Application A2 consists of one task and it is served by a server with a 
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Figure 4.7 An example of schedule produced hy the BSS algorithm: the two tasks 7: and 
-1 i 111 . application Al are scheclulecl by Rate Monotonic. 

bandwidth of 0.5 (since there is only one task, the local scheduling policy does not 
matter). 

Let us concentrate our attention on application A 1: 

an instance of task arrives at time t = 0 with deadline di = 10 and execution 
time (yet unknown) ci  = 3. The server calculates a budget El = 5 and inserts a 
new element in the residual list: 

Then the server invokes the global scheduler. However, since the server of ap- 
plication A2 has an earlier deadline, the application is not executed until time 
t = 3; 

At time t = 3 the global scheduler signals the server of application A that it can 
execute; 

w At time t = 4 an instance of task 721 arrives with deadline di = 12 and an 
execution requirement of c i  = 5. According to the DM scheduler, since task 7-21 

has a smaller relative deadline than task r; ,  a local yl-eernption is done. However, 
since the earliest deadline in application A1 is still di = 10, the server budget and 
deadline are not changed. 



At time t = 8 the budget is exhausted: application A1 has executed for 5 units of 
time. The global scheduler suspends the server. The server first updates the list: 

then it postpones by T = 10 units of time: d l  = dl  + 10 = 20. Now the earliest 
deadline in the application is d 2  = 12, and the server calculates a new budget 
equal to: 

E., = (d2 - d l ) L j  + E l :  

and inserts it into the list: 

Gl  = {(O,  1 0 ) :  ( 1 , 1 2 ) } :  

Finally, it invokes the global scheduler. Since it is again the earliest deadline 
server in the global ready queue, it is scheduled to execute. 

At time t = 9 task 4 finishes. The server updates the list: 

Now the earliest deadline in application A1 is dl  = 20. Then the server calculates 
a new budget and inserts it into the list: 

finally, it invokes the global scheduler. Since it is not the earliest deadline server, 
another server is scheduled to execute. 

It is important to notice that the earliest deadline in the application has been postponed, 
and this deadline can in general be different from the deadline of the executing task. 
Notice also that this framework is very general: basically it is possible to choose any 
kind of local scheduler. In particular, we can let tasks share local resources with any 
concurrency control mechanism, from simple semaphores to the more sophisticated 
Priority Ceiling Protocol or Stack Resource Policy. 

FORMAL PROPERTIES 

The BSS algorithm has two important properties. The Band~vidflz I~olation Proper5 
says that, independently of the local scheduling algorithm, the execution times and the 
arrival rates of the tasks, no application misses its current server's deadline. In other 
words, the BSS provides the same kind of temporal protection property as the one 
provided by the CBS algorithm (see Chapter 3). 



Multi-thread Applicatiorzs 

The Hard Sclzeclulabilit~ ProyertJ permit us to guarantee a priori a hard real-time ap- 
plication scheduled by the BSS. The schedulability analysis for an application depends 
on the local scheduling algorithm. In [LB99, LipOO], schedulability conditions have 
been presented for the following local schedulers: 

Earliest Deadline First: Application A1, which consists of periodic hard real-time 
periodic tasks, is schedulable if and only if: 

where C,. D,  and T, are the worst-case execution time, the relative deadline and 
the period for task i, respectively. 

Rate Monotonic: Application A1, which consists of periodic or sporadic tasks with 
deadlines equal to periods, is schedulable if: 

Stack Resource Policy with EDF: Application A1, which consists of periodic tasks 
with deadlines equal to periods, is schedulable if: 

where B, is the maximum blocking factor for task i. 

Notice that the proposed schedulability tests are similar to the equivalent schedulability 
tests for a virtual dedicated processor of speed CA. Unfortunately, the BSS cannot 
provide perfect equivalence between the schedule in the dedicated processor and the 
schedule in the shared processor. In particular, it has been shown [LipOO] that an 
application schedulable by fixed priority on a dedicated processor of speed C A may 
be unschedulable (i.e. some deadline could be missed) in the shared processor when 
served by a server with bandwidth CA. 



COMPLEXITY 

The BSS algorithm is quite complex to implement, because a linear list of budgets 
has to be kept for each single server. The complexity of the algorithm depends on the 
maximum number of elements that can be present in this list. It has been proved that if 
the application consists of hard real-time periodic task, the length of the list is at most 
equal to the number of tasks in the application. However, even in this case, the time 
spent by the algorithm can be quite high. Lipari and Baruah proposed a data structure, 
called Incrernentnl AVL tree to reduce the time needed to update the list. With the new 
data structure, the complexity is now O ( l o g S ) ,  where is the number of elements in 
the list. 

CONCLUDING REMARKS 

The BSS algorithm presented above, like the Deng and Liu's algorithm, uses infor- 
mation about the tasks to compute the server budget for the entire application. For 
this reason, we can classify these algorithm as infrusive algorithms. They have the 
following limitations: 

It may not be possible to have enough information on the application tasks. For 
example, an application may contain some non-real-time task for which it may be 
impossible to derive a deadline or the worst-case execution time. 

w The strong interaction between the local scheduler and the global scheduler (i.e., 
the server mechanism) makes it difficult to implement such algorithms. It would 
be better to completely separate the local scheduler from the global scheduler. 

For these reasons, researchers recently concentrated their efforts in a different direction, 
as explained in the following section. 

4.3 PARTITION-BASED APPROACHES 

In this section, we first introduce a general methodology to study the problem of par- 
titioning a resource among different applications, and then we present methodologies 
to: a) analyze the schedulability of a real-time application in isolation from the others; 
and b) compute the "optimal" server parameters to make the application schedulable. 
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4.3.1 RESOURCE PARTITIONING 

A general approach to the analysis of hierarchical scheduling systems based on the 
concept of rerource partitiorling was first proposed by Feng et al. [MFCOI, FM02, 
MFOl]. A resource partition is a periodic sequence of disjoint time intervals. An 
application that is assigned a resource partition can only execute in the partition time 
intervals. 

Definition 4.1 A periodic reroiilre partitiorl I I  ir a tuple ( F .  P ) ,  ~Izere F is art arm\ 
of S time pain { ( S l .  E l ) .  (S2. E l ) .  . . . . (S\ . E z  ))  that rati$er (0 < S1 < El < 
S2 < E2 < . . . < S\ < E z  < P) ,  for rorrie > 1, and P  ir the partition period. 
The yhjalcal reao~rrce 1s a~ailable to a task group evec~rfing or1 thia yartltlorl onlj 
dunng tlnle intervals (S, + 3 P. El + 3 P). 1 < 2 < S, 3 > 0. 

The following cases provide two examples of resource partition: 

If the global scheduler is an off-line algorithm, as in TDMA approaches, the time 
line is divided into slots, and each slot is assigned to a different application. In this 
context, the resource partition is the sequence of slots assigned to an application; 

If the global scheduler is an on-line algorithm (as for the Deng and Liu's algorithm, 
or the BSS algorithm), the partition for each application is computed dynamically 
depending on the sequence of arrival times and computation requirements of the 
application tasks. 

Notice that the partition generated by an on-line algorithm may not be periodic, as it 
depends on the arrival times and execution times of the tasks. For the sake of clarity, 
we first introduce some definitions that apply to static periodic partitions and then 
generalize them to dynamic non-periodic partitions. 

Definition 4.2 Tlze a~nilabilitj fcictor of a resource partition I I  ir a number a(I I )  siiclz 
that a( I I )  = (c,\=, ( E ,  - S , ) ) / P .  

Definition 4.3 The s~ryyly~firncfion S ( t )  of a yartitiorl II is the fofal anlo~rnt of time 
that is available in I l f i - o r ~ z  time 0 to time t. 

Definition 4.4 Tlze Leart Supply Function JLSF) S" ( t )  of a resource partition I I  ir the 
rizirlirriz~rri of ( S ( t  + d )  - S ( d ) )  ithere t .  d > 0  



Figure 4.8 Example of a resource partition: a) the partition: b) the Supply Function: c) 
the Least Supply Function; c) the critical partition. 

Definition 4.5 A critical partifion of a reaource partitior1 II  = (T, P )  is II" = (T". P )  
~vhere r has time yaira ccoresyonding fo  flze s t e p  in S X ( t )  such that II 'a s~rpply 
filnction eqz~alr S* ( t )  irl (0. P).  

Example. Consider the resource partition II  = ({(1.2), (I. 6),  (7 .8)} ,  8). The parti- 
tion is depicted in Figure 4.8a. Its supply function S ( t )  is shown with a dashed line 
in Figure 4.8b. The availability factor is a(II) = 0.5. The LSF for the partition is 
depicted with a tick line in Figure 4 . 8 ~ .  Notice that S  ( t )  is always below S ( t ) ,  but 
S ( P )  = S  ( P ) .  Finally, Figure 4.8d shows the critical partition II . 

Given these definitions, Feng et al. proposed a feasibility analysis of an application 
with a local scheduler. Their basic idea is that an application is schedulable if all tasks 
complete within their deadlines, even when the critical instant is coincident with the 
beginning of a critical partition. This is formally stated in the following theorem. 

Theorem 4.3 Suppore a preenzpti~~ejifixed priorit) rclzedding policy ir used to schedule 
an ayylicafiorl on a yarfifiorl b )  aonze yriorih aasigrln~ent ~vlzere all deadlines are no 
larger flzan flze correayonding yerioda. If a fask's~firaf req~reat is ached~rlable in flze 
critical partition, then the task is rchedzdable irl the partitiorl. 
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A similar theorem holds for earliest deadline first local scheduling. 

4.3.2 BOUNDED-DELAY MODEL 

The previous definitions and theorems are useful in the case the partitions are pre- 
computed by some off-line algorithm and are periodically repeated on line. Such a 
scheme is very predictable and allows "tailoring" the partition to the application needs. 

When the global scheduler is an on-line algorithm (as the CBS server described in 
Chapter 3, or any other algorithm that provides temporal isolation), the resource par- 
tition model can be generalized to take the on-line partitioning of the resource into 
account. First of all, the partition needs not to be periodic. The following definition 
generalizes the concept of partition. 

Definition 4.6 A l - e s o u ~ e  parfition i~ an "a~~ocationfifrlctiorl" n(t) flzaf l z a ~  v a l i f e ~  
in (0.1). ZfII(t) = 1, flzen the l-esource is allocafecl fo  flze corresponding ciyylication. 
IfII(t) = 0, the l-eroiilre is not allocated to the applicatiorl and camo t  be ured. A 
partitiorl ir periodic iftlzere existr a P > 0 r z d z  that n(t) - II(t + P). 

The concepts of supply function and least supply function can easily be extended to 
the case of non-periodic partitions. Some additional care is needed for the availability 
factor. 

Definition 4.7 Tlze a ~ n i l a b i l i t ~  factor a of a partitiorl is defined as: 

Now, we want to characterize all possible partitions that are generated by an on-line 
algorithm. The idea is based on the observation that a resource partition is characterized 
by two important parameters: the availability factor n and the partition delay A. The 
latter is defined as follows: 

Definition 4.8 Tlze pal-titiorl d e l q  A of pal-titiorl II is the rrriallest d siich flint 

V t .  S ( t )  - (at - d ) o  > 0 
ithere (.T)~ is a slzol-t form fol- max(0. s). 



Figure 4.9 Relationship bet\\een a,  A and the least supply function 

Notice that, in the definition of partition delay, we use the least supply function S " ( t ) .  
This means that A is the maximum interval of time in which an application does not 
receive any service. Figure 4.9 shows the relationship between a ,  A and the least supply 
function for the partition of the previous example. In particular, function y = ( a t  A) 0 

is always below the least supply function, and there is at least one point in which they 
are coincident. 

For any partition, it is possible to find its availability factor n and its delay A .  Viceversa, 
for each pair (a,  A),  there is more than one partition with availability factor equal to 
n and delay equal to A .  Therefore, the pair ( a .  A) defines a set of partitions. We now 
consider the class of all partitions with availability factor equal to n and delay lerr tliarl 
or equal to A .  

Definition 4.9 The (a. A)-parfition c l a ~ s  is flze c l a ~ ~  qf all parfitiom with availabilify 
fcictor equal to a and d e l q  not greater tlzan A .  

The class of partitions generated by an on-line algorithm like the CBS (or any similar 
algorithm that provides resource reservation and temporal protection) is of particular 
interest. As we will see in the following, there is a direct relation between the parameters 
(n. A) and the parameters Q and P of the server. 

Moreover, given (a. A) assigned to an application and its local scheduling algorithm, 
it is possible to check whether the application is schedulable (see next section). Also, 
given an application and its local scheduling algorithm, it is possible to compute all 
possible values of ( a .  A) that make the application schedulable. 
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4.3.3 PARTITION CLASS OF A SERVER 

In this section we consider a particular version of the CBS algorithm, known as "hard 
reservation server". The main difference with the original algorithm is in the way the 
server behaves when the budget is exhausted. In the original algorithm (see Section 
3.6.1). when the budget is depleted, it is immediately recharged to Q and the deadline 
is postponed to d = d + P. In this way, the algorithm tries to take advantage of the 
EDF rule: if the server deadline is still the earliest one, the server continues to execute 
and has a greater chance to meet its deadline. 

In the "hard reservation" version, when the budget is exhausted, the server is suspended 
and the budget will be replenished at the server deadline d. At the replenishment time, 
the server budget is recharged to its maximum value Q and the server deadline is set 
to d = d + P. Notice that, by introducing this rule, the algorithm becomes non-work 
conserving. The hard reservation rule, however, is important to bound the maximum 
delay of a partition generated by a server. 

Figure 4.10 Worst-case partition generated by a server. 

The following theorem identifies the partition with the maximum delay that can be 
generated by a server. 



Theorem 4.4 G i ~ w  a CBS aewer with flze hard reaetiatiorz ride, arzd ~vith prari~eters 

( Q .  P ) ,  i f  k  = 1-1 , the pnit ioi i  i~,itlz the iiiarirrzi~in delay flint it can gerieiute 

lzaa flze~following leaat a~ryyly~firncfion S" ( t ) :  

i f t  E [O.  P  - Q] 
i f t  E ( k P  - Q. ( k  + l ) P  - 2Q] . (4.2) 

t - ( k  + l ) ( P  - Q )  oflzetiviae 

Proof. 
We have to compute the worst-case allocation provided by the server for every interval 
of time. Consider an interval starting at time t ,  when a new request for execution arrives 
from the application. There are 2 possibilities: 

case a. The server is inactive and a new request is activated at time t ,  with q > (d-t)C.  
In this case, a new budget q = Q and a new deadline d = t  + P are computed. 
The worst-case allocation is depicted in Figure 4.1 la. 

case b. The server is acfive at time t ,  (or it is inactive and q < (d - t ) L 7 )  and it has 
already consumed x units of budget. In this case, the worst possible situation is 
when the server is preempted by the global scheduler until time t  = d - (Q - x ) .  
The worst-case allocation is depicted in Figure 4.1 lb,  and is minimum for x  = Q. 

By comparing the two cases, it is clear that case b, with x = Q, is the most pessimistic. 
The corresponding function is S ' ( t ) ,  as given by Equation (4.2). 

Figure 4.11 Worst-case allocation for the sener. 

Corollary 4.1 All the yartitiorls tlzata CBS rerveri~,itlzpamineterr (Q.  P )  carlyossibly 
generate are in the c h a  (a. a), ~vlzere a = arzd a = 2(P  - Q).  
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4.3.4 SCHEDULABILITY CONDITIONS 

To find a schedulability condition for an application scheduled on a partition with its 
own scheduling algorithm, we must compute the "demand" of the application in every 
interval of time. If the worst-case supply of the corresponding partition (given by the 
least supply function) is always greater than the demand of the application in every 
interval of time, then the application is schedulable. 

Similar methodologies have been proposed by many authors. Saewong et al. [SRLK02] 
extended the response time analysis for fixed priority systems to the case of hierarchical 
schedulers. Their model assumes a Deferrable Server [SLS95] as a basic mechanism 
to partition the processor, and a fixed priority algorithm as a local scheduler. 

Shin and Lee [SL03] proposed a more general framework for schedulability analysis 
of hierarchical scheduling, based on the Feng and Mok's model. They do not assume 
any particular global scheduling mechanism, as long as the global scheduler is able to 
provide a periodic resource abstlnctiorl. Such an abstraction can be provided by any 
hard reservation server mechanism. They also proposed a schedulability analysis for 
a local schedulers based on EDF and on fixed priorities. 

Theorem 4.5 Let A be a sef of penodic or sporcdic task5 {rl. . . . T,,), ~viflz r, = 

(C, .  T,. D,), it here C ,  is the tvorrt-care conzputntion time, T,  ir the tnsk period and 
Dl ir the tnsk re1atil.e deadline. This tark ret is rclzedz~lable b\ the EDF schediilirlg 
algor~tlzrn or1 a reao~rrce parfltlon ~vlth leaat a~rpplj firrlctlorz S ( t )  if arl onlj 9 

ithere H = lcin(T1.. . . . T,) ir the Izxperperiod of A and d b f  ( t )  is the processor 
denland Doundfimction, deJinec1 as: 

Definition 4.10 The riznrirriz~rri senice tirrie for n periodic reroz~rce nbrtrnction ir n 
fi~nction tb f ( t )  tlznt reprerents the rriarirriiirn arnoiirlt of tirrie tlznt it taker to 7-ecei~,e a 
sewice equal fo t. For a periodic r e a o ~ r ~ e  ahfraction ( Q ,  P) ,  



Theorem 4.6 Let A be a sef of periodic or sporadic task5 { r l .  . . . T,,), ~viflz r, = 

(C, . TI .  Dl) ,  I L  here C, is flze ~ v o r ~ f - c a s e  conprtafion time, T ,  i~ the task period and D, 
ir the task relative d e a d h e .  Arriirrie that tarks are odered by decreasirlg priorities. 
This tark set is rclzedz~lable b> ji fired priority or1 a resource partitior1 ,titlz rncixinziinz 
renice time tb f ( t )  f a n  ordy if: 

~vhere tlze respome time R,  can be conzp~rted ~v i th  the follo~virzg iterafive procedure: 

The iteration rtopr ,then Rfk+l) = Rfk) or ,then ~ 6 ~ )  > Dl.  

4.3.5 DERIVING THE SERVER PARAMETERS 

In this section we present a methodology for deriving the "optimal" server parameters 
given the application and the local scheduling algorithm. This problem is the inverse of 
the schedulability problem: rather than testing the schedulability, we want to actively 
derive the "best" parameters that guarantee schedulability. 

Bini and Lipari [LBO31 proposed a methodology for the case of a fixed priority sched- 
uler. It can be easily extended to other schedulers, like EDF, but we leave this extension 
to the reader. 

Let us first tackle the problem of finding the minimum processor speed that maintains 
the task set schedulable. Slowing down the processor speed by a factor n < 1 is 
equivalent to scale up the computation times by l / n :  

The problem is to find the minimum speed n ,,,, keeping the system schedulable. Bini 
and Buttazzo [BB02] found a new way to express the schedulability condition under 
a fixed priority scheduling algorithm as a set of linear inequalities in the computation 
times C,. 
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Theorem 4.7 (Theorem 3 in [BB02]) A sef 7 = { 7 1 , 7 2 ,  . . . , 7 , )  of t a ~ k s  ~v i t h  de- 
creasing yrioritie~ is ~ched~rlable by a~fiued yriorih algorithn~ (f aarzcl only (t 

ithere P, ( t )  is defined by the folloiting recurrent expresriorl: 

By introducing the speed factor a, we can reformulate condition (4.4) taking into 
account the substitution given by Equation (4.3). The result is the following: 

and finally: 

where n,,,, is the minimum processor speed that guarantees the feasibility of the task 
set. 

We now introduce the delay A in the analysis. In fact, when a task set is scheduled 
by a server, there can be a delay in the service because the server is not receiving any 
execution time from the global scheduler. To extend the previous result to the case when 
A > 0 we need to look at Equation (4.6) from a different point of view. Figure 4.12 
illustrates the worst-case workload for a task r,, called TT;(t), and the line a,,,,t. The 
line represents the amount of time that a processor with speed n ,,,, provides to the task 
set. Task T, is schedulable if 

3* E (0. D,] : n ,,,,,, t* > IT;(t*). 



The presence of a delay A prevents us to allocate time slots for an interval of length A. 
This interval can start, in the worst case, at the critical instant for task 7,. that is, when 
r, and all higher priority tasks are released. It follows that the time provided by the 
server is bounded from below by function y ( t )  = (at - A) 0. Figure 4.12 also shows 
different functions y(t) for different values (a.  A). Therefore, when introducing A, 
task 7, is schedulable on a server characterized by function y ( t ) ,  if: 

Notice that, as A increases, the tangent point t* may change. By using Equation (4.7), 
and increasing A we can find all possible a that make the task r, schedulable. 

Figure 4.12 Wo~kload and the a,,, speed. 

In order to find a closed formulation for the relation between n and A expressed by 
Equation (4.7). we need the following Lemma proved in [BB02]. 
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Lemma 4.1 (Lemma 4 in [BB02]) Gi~>en a t a ~ k  ~ ~ r b s e t z  = (71. . . . , 7 , )  sclzedulable 
b? Jived yriorifies and flze Jet P, ( b )  a5 deJirzec1 in Equation (4.51, the ~vorkloacl T I 7 ,  ( d )  
i r 

By means of this lemma, the well known schedulability condition for the task set: 

Vl  = l . . . n  C,  +TI;-l(D,) < D, 

can be rewritten as follows: 

When the task set is served by a server with function y ( t )  = (a t  - A )  o ,  the schedula- 
bility condition expressed by Equation (4.8) becomes the following: 

Since the link between (n. A )  is now explicit, we can manipulate the previous ex- 
pression to obtain a direct relationship between n and A .  In fact, the schedulability 
condition of the single task 7, can be written as: 

and, simplifying the expression, we finally obtain: 

To take into account the schedulability of all the tasks in the set (and not only r, as 
done so far), this condition must be true for every task. Hence, we obtain the following 
theorem. 



Theorem 4.8 A f a ~ k  sef 7 = ( 7 1 ,  7 2 .  . . . , 7 , }  is sclzedidable by a Jewer clzaractericecl 
by the lo~ver bound~firncfion (at  - A )  0 

Proof. 
If A satisfies Equation (4.1 1). then it satisfies all the equations (4.10) for every task in 
the set. Then every task is schedulable on such a local scheduler and so the whole set 
is, which proves the theorem. 

How to choose Q and P. In our process of designing a server for an application 
A, the first step is to characterize the application by specifying all the individual task 
parameters. Once this step is carried out, by applying Theorem 4.8, a class of (a. A )  
pairs is obtained. On this class, which guarantees by definition the schedulability of 
application A, we perform the server selection by optimizing a desired cost function. 
One possible cost function is the overhead of the scheduler. In fact, when choosing the 
server parameters, we must balance two opposite needs: 

1. the required bandwidth should be small, not to waste the total processor capacity; 

2. the server period should be large, otherwise the time wasted in context switches 
performed by the global scheduler would be too high. 

Thus, a typical cost function to be minimized may be the following: 

where Tole,hedd is the global scheduler context switch time, P is the server period, 
a is the fraction of bandwidth, and 11-1 and k 2  are two designer defined constants. 
Moreover, some additional constraints in the ( a .  A )  domain, other than those specified 
by Equation (4.1 l ) ,  may be required. For example, if we use a fixed priority global 
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scheduler, to maximize the resource utilization we could impose the server periods to 
be harmonic. 

To clarify the methodology, let us consider the following example. Suppose we have 
an application A consisting of three tasks with parameters reported in Table 4.1 (for 
simplicity, we choose Dl = T,, but the approach is the same when D, < T,). The 
utilization is C = 114 + 1/10 + 3/25 = 47/100, hence a cannot be smaller than 0.47. 
The schedule corresponding to the worst-case scenario (i.e., the critical instant) when 
the application is scheduled alone on the processor is shown in Figure 4.13. 

Table 4.1 Task set parameters for application A 

Figure 4.13 Worst-case scheclule of application A 

By expanding Equation (4.10) for rl we obtain the following inequality: 

Doing the same for r2, we obtain: 

Pl (10 )  = (8.10) 

a < max(8 - 3/n.  10 - 4/n )  

and, finally, for the last task rs :  



In order to make all the three tasks schedulable, all the inequalities must hold at the 
same time, as stated in Theorem 4.8. It follows that: 

Figure 4.14 illustrates the set of ( a .  A)  pairs defined by Equation (4.13) as a gray 
area whose upper boundary is drawn by a thick line. This boundary is a piece-wise 
hyperbole, because it is the minimum between inequalities, each one of them is an 
hyperbole (see Equations (4.10) and (4.11)). Notice that, in this particular case, the 
schedulability condition for task 7 2  does not provide any additional constraint. 

Figure 4.14 also shows a qualitative cost function that increases as a increases, and 
decreases as A increases (see Equation 4.12). If we minimize this qualitative function 
on the domain expressed by Equation (4.13), the solution is n = 11 120 and A = 2411 1. 
We can now find the period P and the budget Q of the server corresponding to the 
selected solution: 

Q A = 2 ( P - Q )  a = -  
P 

then: 

By substitution, we obtain the server parameters: P = 80133 -. 2.424 and Q = 413 -. 
1.333. 

Finally, Figure (4.15) shows the schedule for the sample application, obtained by con- 
sidering the worst-case scenario both for the time requested by tasks and for the time 
provided by the server. The shaded areas represent intervals where the server does not 
receive any allocation by the global scheduler. As expected, all tasks complete within 
their deadlines. 

4.4 CONCLUDING REMARKS AND OPEN PROBLEMS 

In this chapter, we discussed the problem of scheduling different applications in the 
same system, an application being a set of concurrent tasks handled by a dedicated 
customized scheduler. Then, we presented some algorithms to deal with this problem. 
These algorithms are based on the concept of "hierarchical scheduling": a global 
scheduler allocates the resource to the different applications, and a local scheduler for 
each application selects the task to be executed. We first presented the algorithm of 
Deng andLiu [DLS97, DL971 and the BSS algorithm: they both assume the knowledge 
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Figure 4.14 Ser\er palameters in the (a A) domain 

of the parameters of the applications' tasks to allocate the resource to the different 
applications. Then, we presented a more general approach that consists in using a 
resource reservation algorithm (like the CBS) at the global level. This approach seems 
the most promising, as the global scheduler does not need to know the internal details 
of the applications to be able to provide timing guarantees. 

There are still some open issues that need to be addressed. One important question 
is whether it is possible to provide an "optimal" non fluid algorithm that can be im- 



Instants when the server reauires O time 

Figure 4.15 Worst-case schedule of application A on a serve1 mith the computecl param- 
etex 

plemented in a real system. More formally: given 5 applications A 1. . . . .A \ ,  each 
schedulable on a dedicated processor of speed C, with some scheduling algorithm S,, 

T and with I,=, L; < 1, is there a non-fluid algorithm able to schedule all applications 
in a shared processor of speed C = l? 

Of course, the GPS algorithm is ruled out, since it is a fluid algorithm that cannot be 
implemented in practice. We have seen that Deng and Liu's algorithm and the BSS 
algorithm are not able to provide such a property: both algorithm require that some 
extra capacity is assigned to each application in order to guarantee it. 

Another problem that needs to be solved is how to synchronize two applications. For ex- 
ample, if two applications need to communicate through mutually exclusive resources, 
each application will experience some blocking time that must be taken into account 
in the schedulability test. Although a first proposal has been done by Kuo and Li 
[KL99] to extend Deng and Liu's algorithm, more research is needed to extend the 
other approaches. 



SYNCHRONIZATION PROTOCOLS 
FOR HARD AND SOFT REAL-TIME 

SYSTEMS 

Most of the real-time scheduling algorithms presented in the previous chapters assume 
that tasks cannot self-suspend and cannot use blocking primitives. These assumptions 
are quite restrictive because, in practice, tasks often use synchronous operating system 
calls that introduce blocking. For example, if tasks exchange data via shared memory 
buffers, access to shared memory has to be protected by mutually exclusive (mutex) 
semaphores to prevent possible inconsistencies in the data structures. However, if a 
task blocks on a mutex semaphore, the task model considered in the previous chapters 
is not valid anymore. 

In hard real-time systems, the problem of blocking on a mutex semaphore can be 
solved by using appropriate synchronization protocols that bound the blocking time of 
the tasks. The extension of these protocols to soft real-time systems and, in particular, 
to reservation based real-time systems is not straightforward. 

In this chapter, we first describe the problem caused by mutual exclusion and briefly 
describe some background work on real-time protocols for accessing mutually exclu- 
sive resources. Then, we present protocols and scheduling algorithms that extend the 
resource reservation framework to the case of mutex semaphores. We will discuss two 
different approaches. In the first approach, we extend the CBS algorithm to systems 
consisting of hard real-time periodic tasks and soft real-time aperiodic tasks that can 
share resources. The resulting algorithm is called CBS-R. Then, we consider a more 
general model of an open system, where tasks can be dynamically activated in the 
system, and we present the Bandwidth Inheritance (BWI) protocol. 



5.1 TERMINOLOGY AND NOTATION 

We consider a set R of r resources, a set I" of n hard periodic (or sporadic) tasks, 
and a set IA of m soft aperiodic tasks that have to be executed on a uniprocessor 
system. Tasks are preemptable and all the resources are accessed in exclusive mode 
using critical sections guarded by mutually exclusive semaphores. To simplify o ~ l r  
presentation, only single-unit resources are considered, however the results can easily 
be extended to deal with multi-unit resources, as described in [Bak91]. Every resource 
is assigned a different semaphore. Therefore, we will often refer to a resource or to its 
corresponding semaphore with the same symbol R ,  E R. 

A critical section is a fragment of code that starts with a lock operation on a semaphore 
R, and finishes with an unlock operation on the same semaphore. We denote the 
lock and unlock operation with P ( R , )  and 17(R,)  respectively. Critical sections can 
be neatecl, that is, it is possible to access resource R, while holding the lock on re- 
source R k .  We assume yroyerl! nested critical sections, so that a sequence of code 
like P ( R 1 ) .  . . . . P ( R 2 ) .  . . . . V(R2) .  . . . . V(R1) is permitted, whereas a sequence like 
P ( R 1 ) .  . . . . P ( R 2 ) .  . . . . 17(R1). . . . . 17(R2)  is notpermitted. I~lternnl critical sections 
are nested inside other critical sections, whereas e,~ferrlal critical sections are not. We 
denote the worst-case execution time of the longest critical section of task r, on re- 
source R k  as c, (Rx) .  Note that <, ( R x )  comprises the execution time of all the internal 
critical sections. We also assume that if a job performs a lock operation on semaphore 
R A  , it performs the corresponding unlock operation before its completion. Therefore, 
a critical section cannot span through two consecutive jobs. 

5.2 SHARED RESOURCE IN REAL-TIME SYSTEMS 

If a real-time task uses mutex semaphores, a particular problem can arise, referred in 
the literature as the priorif! inverrion problenz. This problem has become very famous 
in the real-time community because it was reported to happen in the NASA space 
mission called "Mars Pathfinder". A small robot, the Sojo~lrner rover, was sent to 
Mars to explore the martian environment and collect useful information. The on-board 
control software consisted of many software threads, scheduled by a fixed priority 
scheduler. One high priority thread and one low priority thread were using the same 
software data structure through a shared semaphore1. At some instant, it happened 
that the low priority thread was interrupted by medium priority threads while blocking 
the high priority thread on the semaphore. The situation was very similar to the one 
depicted in Figure 5.1. 

'The semaphole \\as actuall~ 11sed h~ a Iiblar) that proLided high l e ~ e l  colmnunication mechanisms 
among threads namel) the plpe  ( )  mechanism 



Figure 5.1 An example of priorit> in\ ersion. 

The low priority task r L  acquires the lock on the resource R with the lock operation 
P(R). Immediately after, it is preempted by the high priority task r H ,  which tries to 
lock the same resource and it is blocked. Therefore, r L  resumes execution. Before 
being able to release the lock, r~ is preempted by a medium priority task r l f i  As a 
consequence, the high priority task T H  must now wait for T J J  to complete. 

At the time of the Mars Pathfinder mission, the problem was already known. The first 
accounts of the problem and possible solutions date back to early '70s. However, the 
problem became widely known in the real-time community since the seminal paper of 
Sha, Rajkumar andLehoczky [SRL90]. who presented the Priority Inheritance Protocol 
and the Priority Ceiling Protocol to bound the time a real-time task can be blocked on 
a mutex semaphore. 

Later, other similar protocols have been presented in the literature. Among the others, 
we would like to mention the Stack Resource Policy [Bak90, Bak911, which will be 
briefly recalled in 5.3.3, and the Dynamic Priority Ceiling [CL90]. 

5.3 SYNCHRONIZATION PROTOCOLS FOR HARD 
REAL-TIME SYSTEMS 

5.3.1 PRIORITY INHERITANCE PROTOCOL 

The Priority Inheritance Protocol (PIP) was first presented in [SRL90] to solve the 
priority inversion problem. According to this protocol, when a high-priority task r~ 
is blocked on the entrance of a critical section, the low-priority task r~ that holds the 



lock on the resource inherit5 the priority of rH. When r ~  unlocks the resource and 
no other task is blocked by 7 ~ .  it returns to its nominal priority. In general, a task r ,  
always executes with apriority equal to the maximum between its nominal priority and 
the maximum priority of the tasks it is blocking. 

Even though the PIP was developed in the context of fixed priority scheduling, it can 
also be applied to dynamic priority scheduling (its extension has been done by Spuri 
[SRBS98]). The following basic properties hold: 

A taak 7, can be blockedfor at n m t  flze durafion of one crifical aecfion for each 
lo~ver yriorih taak, regardleaa of the rmrnber of aen~ayhores flzaf can yofenfiall? 
block r,. 

A taak 7, can be blockedfor at n m t  flze durafion of one crifical aecfion for each 
rernciphore that cart potentiall! block 7,. 

Using these properties, it is possible to give a sufficient condition for the schedulability 
of a set of n hard real-time periodic tasks. If tasks are ordered by non decreasing 
periods (T, < T, + z < J ) ,  the schedulability condition can be expressed as follows 
[But97, SRBS981: 

where B, is the worst-case blocking time of task 7, and Club(A)  is the least upper 
bound of the scheduling algorithm A used in the system. 

If the PIP is applied on the example of Fig~lre 5.1, the priority inversion phenomenon is 
reduced. The resulting schedule is illustrated in Figure 5.2. When task T H  is blocked 
by TL ,  the latter inheritr the priority of T H .  Thus, when task T I [  is activated, it cannot 
preempt rL. When r ~  releases the lock, it returns to its original priority and it is 
preempted by rH. 

When tasks are allowed to use nested critical sections, many complex blocking situa- 
tions can occ~lr. In particular, a task can inherit a new priority every time it blocks a task 
on a resource (multiple inheritance), and can be blocked by many tasks on different 
resources (clzained Dlockirg). Moreover, if critical sections can be nested arbitrarily, 
a deadlock may occur, as shown in Figure 5.3. In this example, both T I  and access 
two resources R1 and R2 in a nested fashion. In particular, rl accesses them in the 
order P(R2) ,  . . .. P(R1) ,  . . .. l ' (R1) ,  . . ., Lr(R2), whereas 7 2  accesses them in the 
order P(R1) ,  . . .. P(R2) ,  . . .. Lr(R2), . . ., Lr(R1). If tasks arrive as shown in Figure 
5.3, a deadlock occurs when 7 2  performs the P(R2)  operation. Unfortunately, the PIP 
cannot prevent this to happen. 



normal execution 

critical section 

Figure 5.2 Schedule under the Priority Inheritance Protocol 

Figure 5.3 An example of deadlock situation 

5.3.2 PRIORITY CEILING PROTOCOL 

The Priority Ceiling Protocol (PCP) [SRL90] improves the PIP by using additional a- 
priori information: each resource R is assigned a ceiling C(R) equal to the maximum 
priority among all tasks that may lock R. The ceiling C(R) is a static parameter that 
must be computed before runtime. 

The PCP has the following rules: 

w At time t ,  the executing task 7, can lock resource R if its priority p, is strictly 
higher than all the ceilings of the resources currently locked by other jobs. Let 
C* be such a ceiling, and let R* be the corresponding resource. If p, < C*, task 
7, is said to be blocked on R" by the task is holding R". 



Figure 5.4 An example of schedule generated by the PCP 

w If r, is blocked by a lower priority task r L  on resource R ,  r L  inherits the priority 
of 7,. 

When r~  unlocks the resource and no other task is blocked by r L ,  it returns to its 
nominal priority. In general, a task 7, always executes with a priority equal to the 
maximum between its nominal priority and the maximum priority of the tasks it 
is blocking. 

We now revisit the example of Figure 5.3 by using the PCP. The resulting schedule 
is shown in Fig~lre 5.4. Since both resources R 1  and R 2  are used by 71 and 72, their 
ceiling is equal to the priority of r l :  C(R1)  = C(R2)  = p l .  At time t l ,  7 2  locks 
R1, therefore R" = R1. At time t2 ,  rl tries to lock R2,  but it is blocked because its 
priority is not strictly higher than C ( R 1 ) .  Hence 7-2 inherits the priority of rl to avoid 
unbounded priority inversion by other medium priority tasks. When r2 releases the 
lock on R1, 71 is awaken, accessing its resources without further blocking. 

Sha, Rajkumar and Lehoczky [SRL90] formally proved that: 

the PCP prevents chained blocking; 

w the PCP prevents deadlocks; 

under the PCP, a task can be blocked for at most the duration of one critical section. 

5.3.3 STACK RESOURCE POLICY 

The Stack Resource Policy (SRP) was proposed by Baker [Bak90, Bak911 to simplify 
the implementation of synchronization protocols in hard real-time embedded systems. 
As the PCP, the SRP prevents deadlocks, chained blocking, and limits the blocking time 
of each task to the length of a single critical section. In addition, the SRP allows the user 



to define multi-unit resources, can work with fixed and dynamic priority scheduling, 
and allows all tasks to share a single stack, thus saving significant memory space. 
Finally, its implementation is straightforward, because SRP semaphores do not require 
waiting queues. 

According to this protocol, each task 7, is assigned a (static or dynamic) priority p ,  and 
a static preemption level T,, such that the following essential property holds: 

Property 5.1 T a ~ k  r, is rzof allo~ved to yreernyf task T,, m l e ~ s  T, > T,. 

Under EDF and Deadline Monotonic (DM) scheduling, Property 5.1 is verified if a 
task 7, is assigned a preemption level inversely proportional to its relative deadline: 

In addition, every resource Rk is assigned a static' ceiling defined as 

C ( R A )  = max {T, 7, needs Rk}. 
2 

A dynamic system ceilirg is defined as 

n, ( t )  = mas[{C(Rk)  R k  is currently busy} U {O}] . 

Then, the SRP scheduling rule states that "a  job i~ not allowed to yreenlyf until it5 
yriorih i~ flze lziglzesf among the active job5 and it5 yreen~ytion level is greater flzan 
the jstenl ceiling". It can be proved that the maximum time a task can be delayed 
by such a preemption test is at most equal to the length of a critical section. Once a 
task is started, the SRP ensures that it will never block until completion; it can only be 
preempted by higher priority tasks. 

Figure 5.5 illustrates the same example of Figure 5.3 when resources are accessed by 
the SRP. By comparing Figures 5.4 and 5.5, we note that the schedule generated by the 
SRP has one less context switch. In fact, the high priority task is blocked upon arrival 
and not when it accesses the resource. 

At a first sight, the reader might think that such an anticipated blocking is too pes- 
simistic. However, it can be shown that the PCP and the SRP provide the same bound 



Figure 5.5 Schedule generated by the SRP. 

on the blocking time of a task. In fact, the same task sets that are schedulable with the 
PCP, are also schedulable with the SRP. 

Since a task never blocks once it starts executing, under the SRP there is no need 
to implement waiting queues. The blocking time B, considered in the schedulability 
analysis refers to the time for which task 7, is kept in the ready queue by the preemption 
test. Although a task never blocks on a lockedreso~lrce, B , is considered as a "blocking 
time" because it is caused by tasks having lower preemption levels. 

Assuming relative deadlines equal to periods, the maximum blocking time for a task 
7, can be computed as the longest critical section among those belonging to tasks with 
preemption level less than n, and with a ceiling greater than or equal to x, : 

B, = lnaxj. l 2 { ;  ,h (x, < TI,) A n, < C(RI,)) .  (5.2)  

where -,!, is the length of the longest critical section of task 7, on resource Rh. 

Given these definitions, the feasibility of a set of periodic or sporadic tasks with resource 
constraints under EDF can be verified by the following sufficient condition: 

where we assumed that all the tasks are sorted by decreasing preemption levels, so that 
n, > njr, only if i < j. 

The following theorem [LBOO] extends the feasibility analysis by providing a tighter 
schedulability test. 

'1n the case of multi-units resources, the ceiling of each resource is dynamic as it depends on the number 
of units actually free. 



Theorem 5.1 Let I" be a Jef of 7 2  1zar.d ~yora-acllc task5 ordered b j  decrea~lng yreenzy- 
tlon level (50  that njr, > n, onlj if 2 < 31, sidz flzaf L> = C:=, 2 < 1. Tl~en, I" 15 

schediilable b\ EDF+SRP Ifand on/\ If: 

It is worth noting that condition (5.4) is necessary and sufficient only for sporadic tasks, 
under the assumption that all tasks experience the maximum blocking time. This means 
that the SRP is optimal for sporadic tasks; that is, every feasible sporadic task set can be 
scheduled by EDF with the SRP. For periodic tasks the problem of deciding feasibility 
in the presence of resource constraints has been shown to be NP-hard [Jef92]. The 
complexity of the test is pseudo-polynomial; hence, it can be too costly for providing 
on-line guarantee in large task sets. 

5.4 SHARED RESOURCES IN SOFT REAL-TIME 
SYSTEMS 

The protocols described in the previous section were designed for hard real-time sys- 
tems to limit priority inversion in the presence of resource constraints. When consider- 
ing other task models (like aperiodic non-real-time tasks, soft real-time tasks and firm 
tasks) the problem of using shared memory protected by mutex semaphores becomes 
more complex. 

A method for analyzing the schedulability of hybrid task sets where hard tasks may 
share resources with soft tasks handled by dynamic aperiodic servers was first presented 
by Ghazalie and Baker [GB95]. Their approach is based on reserving an extra budget 
to the aperiodic server for synchronization purpose and using the utilization-based 
test [LL73] for verifying the feasibility of the schedule. Lipari and Buttazzo [GBOO] 
extended the analysis to a Total Bandwidth Server (TBS), using the Processor Demand 
Criterion [BRH90]; Buttazzo and Caccamo [BC99] used a similar approach to extend 
the analysis to the optimal Total Bandwidth (TB') server. 

In this chapter we describe possible solutions to the problem of bounding the blocking 
time of real-time tasks in hybrid systems consisting of hard and soft real-time tasks 
that can share resources. We first present an extension of the Constant Bandwidth 
Server (working with the SRP) that allows aperiodic tasks to share resources with hard 



real-time periodic tasks. Then, we consider a more general model of open system, 
i.e., a system that has no a-priori knowledge of the task behavior, and we show how 
it is possible to provide real-time guarantees by using an algorithm that combines the 
Constant Bandwidth Server with the Priority Inheritance Protocol. 

5.5 EXTENDING RESOURCE RESERVATION WITH 
THE SRP 

The solution presented in this section, proposed by Caccamo and Sha [CSOl], extends 
the Constant Bandwidth Server (CBS) algorithm [Abe98] to work under resource con- 
straints and keep the key properties of the Stack Resource Policy (SRP) [Bak91] for 
resource sharing. 

One of the problems in the integration of the CBS with the SRP is that the SRP protocol 
was developed under the assumption that preemption levels are fixed, and relative 
deadlines do not change. Unfortunately, under the CBS, server relative deadlines can 
be postponed, thus the resulting preemption level is dynamic. 

Another problem is to avoid that an aperiodic task suspends its execution inside a 
critical section because the budget is exhausted. In fact, this would cause the blocked 
task to increase its blocking time, waiting until the budget is replenished. To avoid 
such an extra delay, we should allow the aperiodic task to continue until it leaves the 
critical section. Such an additional execution time is a kind of overrun, whose effects 
need to be taken into account in the feasibility test. 

Two approaches can be pursued to deal with this problem. A first solution is to reserve 
extra budget for each CBS server for synchronization purposes and permit execution 
overruns. A second approach does not reserve extra synchronization budget, but pre- 
vents an aperiodic task from exhausting its budget inside a critical section. This section 
investigates the latter approach to improve the efficiency of the CBS budget manage- 
ment. 

5.5.1 PREVENTING BUDGET EXHAUSTION INSIDE 
CRITICAL SECTIONS 

To prevent long blocking delays due to the budget replenishment rule, a job exhausting 
its budget inside a critical section should be allowed to continue executing with the 
same deadline, using extra budget, until it leaves the critical section. At this time, the 
budget can be replenished at its fill1 value and the deadline postponed. 



In these situations, the maximum budget overrun occurs when the server exhausts its 
budget immediately after the job entered its longest critical section. Thus, if < is the 
duration of the longest critical section of task r handled by server S, the bandwidth 
demanded by the server becomes 9. This approach clearly inflates the server 
utilization. 

Alternatively, a job can perform a budget check before entering a critical section. If the 
current budget q,  is not sufficient to complete the job's critical section, the budget is 
replenished and the server deadline postponed. The remaining part of the job follows 
the same procedure until the job completes. 

This approach dynamically partitions a job into chiirlks. Each chunk has execution time 
such that the consumed bandwidth is always less than or equal to the available server 
bandwidth C,. By construction, a chunk has the property that it will never suspend 
inside a critical section. The following example illustrates two different solutions with 
the CBS+SRP, both using static preemption levels. 

Example 5.1 The task set consists of an aperiodic job J1, handled by a CBS with 
Q, = 1 and P, = 10, and two periodic tasks, 7 1  and 7 2 ,  sharing two resources R, and 
Rb. In particular, J 1  and 7 2  share resource Rb, whereas rl and 7 2  share resource R,. 
The task set parameters are reported in Table 5.1. 

I tnrk 1 1  type I Q,orC I P,orT R, I Rb I 

Table 5.1 Parameters of the task set. 

. . 

The first solution presented on this task set maintains a fixed relative deadline whenever 
the budget is replenished and the deadline postponed. The advantage of a fixed relative 
deadline is to keep the SRP policy unchanged for handling resource sharing between 
soft and hard tasks. According to this solution, when at time t the current budget is not 
sufficient for completing a critical section, a new deadline is computed as d ;'" = t + P, 
and the budget is recharged at the value q ,  = q, + (dt"' - d;ld)c,, where d;ld is the 
previous server deadline. 

J1 
rl 

71 

A possible schedule of the task set produced by CBS+SRP is shown in Figure 5.6. 
Notice that the ceiling of resource R,  is C(R,) = 1/12,  and the ceiling of Rb is 
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critical section on resource Ra 

critical section on resource Rb 

Figure 5.6 CBS+SRP \+it11 static preemption le~els 

C(Rh)  = 1/10. When job J1  arrives at time t = 2, its first chunk H1 1 receives a 
deadline dl 1 = a1 1 + P, = 12, according to the CBS algorithm. At this time, r2 
is already inside a critical section on resource R,, however H1 1 of job J 1  is able to 
preempt, since its preemption level is 7il = 1/10 > II,. At time t = 5, J1  tries to 
access resource Rb, but its residual budget is equal to 1 and is not sufficient to complete 
the whole critical section. As a consequence, a new chunk H 1  2 is generated with an 
arrival time a1 2 = 5 and a deadline d l  2 = a1 2 + P, = 15 (the relative deadline is 
fixed). The budget is replenished according to the available server bandwidth; hence, 
q ,  = q ,  + (dt" - d i l d ) ~ ,  = 1 + 1.2. Unfortunately, the current budget is not 
sufficient to complete the critical section and an extra budget equal to 0.8 is needed. 
Hence, we have to inflate the budget, wasting bandwidth. The remaining part of the 
job follows the same procedure until the job completes. This approach has two main 
drawbacks: an extra budget still needs to be reserved, and jobs are cut in too many 
chunks, so increasing the algorithm overhead. 

The second solution suspends a job whenever its budget is exhausted, until the current 
server deadline. Only at that time, the job will become eligible again, and a new chunk 
will be ready to execute with the budget recharged at its maximum value (q, = Q,) 
and the deadline postponed by a server period. 

The schedule produced using this approach is shown in Figure 5.7. When job J 1 arrives 
at time t = 2, its first chunk H1.1 receives a deadline d l  1 = a1 1 + P, = 12, according 
to the CBS algorithm. At time t = 5 ,  J 1  tries to access resource Rh, but its residual 
budget is equal to one and is not sufficient to complete the whole critical section. As a 
consequence, J 1  is temporarily suspended and a new chunk is released at time t = 12, 



critical section on resource Ra 

critical section on resource Rb 

Figure 5.7 CBS+SRP \\ith static pleemnption le\els and job suspension 

with deadline dl 2 = 22, and the budget replenished ( q s  = Qs = 4). This approach 
has also two main drawbacks: it increases the response time of aperiodic tasks and, 
whenever the budget is recharged, the residual budget amount (if any) is wasted due to 
job suspension. 

5.5.2 DYNAMIC PREEMPTION LEVELS 

The two methods described above show that, although the budget check prevents bud- 
get exhaustion inside a critical section without inflating the server size, fixed relative 
deadlines and static preemption levels do not allow implementing an efficient solution 
to the addressed problem. 

In this section we show that using dynamic preemption levels for aperiodic tasks al- 
lows achieving a simpler and elegant solution to the problem of sharing resources 
under CBS+SRP. According to the new method, whenever there is a replenishment, 
the server budget is always recharged by Q , and the server deadline postponed by P,. 
It follows that the server is always eligible, but each aperiodic task gets a dynamic 
relative deadline. 

To maintain the main properties of the SRP, preemption levels are kept inversely pro- 
portional to relative deadlines, but are defined at a chunk level. The preemption level 
T, , of a job chunk H z  , is defined as x,. , = l / (d , .  , - c x ,  , ). Notice that T, , is assigned 
at run time and cannot be computed off line. As a consequence, a job J ,  is characterized 
by a cl?.~lnnzic pl-eernpfion le~,el  T :  equal to the preemption level of the current chunk. 



critical section on resource Ra 

critical section on resource Rb 

Figure 5.8 CBS+SRP \+it11 d~namic  preemption le\els 

To perform an off-line guarantee of the task set, it is necessary to know the rnauinlim 
pr-een~pfion level that can be assigned to each job J ,  by the server. Therefore, the 
deadline assignment rule is modified to guarantee that each chunk has a minimum 
relative deadline DY1" equal to its server period (the precise rules are reported in 
Section 5.5.4). 

By setting D:'"'" - - P,, each aperiodic task 7 ,  is characterized by a r~zaxir~zun~ yre- 
erizytiorl level 7iin" ' inversely proportional to the server period (7iin" ' - - l /P , ) .  The 
maximum preemption levels are then used to compute the ceiling of every resource off 
line. Note that 7it < 7iYn ' , in fact, by definition, 

The schedule produced by CBS+SRP under dynamic preemption levels is shown in 
Figure 5.8. When job J1  arrives at time t = 2, its first chunk H1.1 receives a deadline 
d l ~ l  = 01.1 + Ps = 12 according to the CBS algorithm. At this time, T~ is inside a 
critical section on resource R,, but H1.1 of job J 1  is able to preempt, since 7il~l = 

1/10 > II,. At time t = 5, J1 tries to access resource Rb, but its residual budget 
is equal to one and is not sufficient to complete the whole critical section. As a 
consequence, the deadline is postponed by P, and the budget replenished by Q,: 
q, = q ,  + Q ,  = 5. Hence, the next chunk H I . ?  of J 1  starts at time 01.2 = 5 with 
deadline d l ~ ~  = dl.1 + P, = 22 and budget q ,  = 5. However, chunk cannot 
start because its preemption level xl.2 = 1/17 < II,. It follows that 7 2  executes until 
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the end of its critical section. When the system ceiling becomes zero, J 1  is able to 
preempt 7 2 .  Note that the bandwidth consumed by any chunk is no greater than C,, 
since whenever the budget is refilled by Q ,, the absolute deadline is postponed by P , .  

The main advantage of the proposed approach is that it does not require to reserve extra 
budget for synchronization purposes and does not waste the residual budget (if any) 
left by the previous chunk. However, we need to determine the effects that dynamic 
preemption levels have on the properties of the SRP protocol. 

We first note that, since each chunk is scheduled by a fixed deadline assigned by the 
CBS, each chunk inherits the SRP properties. In particular, each chunk can be blocked 
for at most the d~lration of one critical section by the preemption test and, once started, 
it will never be blocked for resource contention. However, since a soft aperiodic job 
may consist of many chunks, it can be blocked more than once. The behavior of hard 
tasks remains unchanged, permitting resource sharing between hard and soft tasks 
without jeopardizing the hard tasks' guarantee. The details of the proposed technique 
are described in the next section. 

5.5.3 CBS WITH RESOURCES CONSTRAINTS 

In this section we first define the rules governing the CBS server with resource con- 
straints, CBS-R, that have been informally introduced in the previous section. We then 
prove its properties. Under the CBS-R, each job J ,  starts executing with the server 
current budget q ,  and the server current deadline d,. Whenever a chunk H z ,  exhausts 
its budget at time t, that chunk is terminated and a new chunk HI ,+I is released at 
time a, ,+I = t with an absolute deadline d l  ,+I = d ,  , + P, (where P, is the period 
of the server). When the job chunk H I ,  attempts to lock a semaphore, the CBS-R 
server checks whether there is sufficient budget to complete the critical section. If 
not, a replenishment occurs and the execution performed by the job is labeled as chunk 
Hz ,+I ,  which is assigned a new deadline d l  ,+I = d l  , + P,. This proced~lre continues 
until the last chunk completes the job. 

To comply with the SRP rules, a chunk H z ,  starts its execution only if its priority is the 
highest among the active tasks and its yl-eernption le~ ,e l  T ,  , = l / ( d ,  , - a, ,) is greater 
than the system ceiling. In order for the SRP protocol to be correct, every resource R , 
is assigned a static3 ceiling C(R , )  (we assume binary semaphores) equal to the highest 
maximum preemption level of the tasks that could be blocked on R , when the resource 
is busy. Hence, C(R, )  can be computed as follows: 

"ln the case of multi-units resources, the ceiling of each resource is dynamic as it depends on the number 
of units actually free. 



C ( R , )  = i i l a x { ~ ; I " ~ ~  7 ~  needs  R,) .  
k 

(5.6) 

It is easy to see that the ceiling of a resource computed by equation (5.6) is greater 
than or equal to the one computed using the dynamic preemption level of each task. 
In fact, as shown by equation (5.5), the maximum preemption level of each aperiodic 
task represents an upper bound of its dynamic value. 

Finally, in computing the blocking time for a periodiclaperiodic task, we need to take 
into account the duration of the critical section of an aperiodic task without considering 
its relative deadline. In fact, the actual relative deadline of a chunk belonging to an 
aperiodic task is assigned on-line and it is not known in advance. 

To simplify our formulation, we assume that each hard periodic task is handled by 
a dedicated CBS-R server with Q, > C, and T, = T I .  With such a parameters 
assignment, hard tasks do not really need a server in order to be scheduled; we prefer 
to use a server also for hard tasks, because this approach gives us the possibility to 
implement an efficient reclaiming mechanism on the top of the proposed approach. A 
reclaiming algorithm, like CASH [CBSOO], is able to exploit spare capacities and can 
easily be integrated in this environment. 

The blocking times can be computed as a function of the minimum relative deadline 
of each aperiodic task, as follows: 

where s ,  h is the worst-case execution time of the h-th critical section of task 7 , .  p,  h is 
the resource accessed by the critical section s ,  i , ,  and T,, is the period of the dedicated 
server. The B, parameter computed by equation (5.7) is the blocking time experienced 
by a hard or soft task. In fact, T, = D y z n  for a soft aperiodic task and T, = D, for 
a hard periodic task. 

The correctness of our approach will be formally proved in Section 5.5.6. We will show 
that the modifications introduced in the CBS and SRP algorithms do not change any 
property of the SRP and permit to keep a static ceiling for the resources even though 
the relative deadline of each chunk is dynamically assigned at run time by the CBS-R 
server. 

As shown in the examples illustrated above, some additional constraints have to be 
introduced to deal with shared resources. In particular, the correctness of the proposed 
technique relies on the following rules: 



Each job chunk must have a minimum relative deadline known a priori. 

A task must never exhaust its budget when it is inside a critical section. 

In the following section we formally define the CBS-R algorithm which integrates the 
previous rules. 

5.5.4 DEFINITION OF THE CBS-R 

The CBS-R can be defined as follows: 

1. A CBS-R is characterizedby a budget q ,  andby an orderedpair (Q ,. P,), where Q, 
is the maximum budget and P, is the period of the server. The ratio C, = Q,/P, is 
denoted as the server bandwidth. At each instant, a fixed deadline d ,  is associated 
with the server. At the beginning d ,  = 0. 

2. Each served job chunk H z ,  is assigned a dynamic deadline d l  , equal to the current 
server deadline d ,  . 

3. Whenever a served job executes, the budget q ,  is decreased by the same amount. 

4. When q ,  = 0, the server budget is recharged at the maximum value Q , and a 
new server deadline is generated as d ,  = d ,  + P, . Notice that there are no finite 
intervals of time in which the budget is equal to zero. 

5.  A CBS-R is said to be active at time t if there are pending jobs (remember the 
budget q,  is always greater than 0); that is, if there exists a served job J ,  such that 
?-, < t < f,. A CBS-R is said to be idle at time t if it is not active. 

6. When a job J ,  arrives and the server is active the request is enqueued in a queue 
of pending jobs according to a given (arbitrary) discipline (e.g., FIFO). 

7. When a job J ,  arrives and the server is idle, if q ,  > ( d ,  - r , )C,  the server 
generates a new deadline d ,  = r, + P, and q ,  is recharged at the maximum value 
Q,, otherwise the server generates a new deadline d ,  = mcxs(r, + P,. d,)  and 
the budget becomes q ,  = q, + ( d t e U  - ~ z ' ~ ) C , .  

8. When a job finishes, the next pending job, if any, is served using the current budget 
and deadline. If there are no pending jobs, the server becomes idle. 

9. At any instant, a job is assigned the last deadline generated by the server. 



10. Whenever a served job J ,  tries to access a critical section, if q,  < <, (where <, is 
the duration of the longest critical section of job J ,  such that <, < Q,), a budget 
replenishment occurs, that is q ,  = q ,  + Q ,  and a new server deadline is generated 
as d ,  = d ,  + P,. 

It is worth noting that, with respect to the original definition given in [Abe98], we 
modified rule (7) and introduced rule (10). Rule (7) has been modified in order to 
guarantee that each job chunk has a minimum relative deadline equal to the server 
period. In fact, whenever a job J ,  arrives and the server is idle, the job gets an absolute 
deadline grater than or equal to the arrival time plus the server period. The budget is 
recharged in such a way that the consumed bandwidth is always no greater than the 
reserved bandwidth L7, = Q, / P,. 

Rule (10) has been added to prevent a task from exhausting its budget when it is using 
a shared resource. This is done by performing a budget check before entering a critical 
section. If the current budget is not sufficient to complete a critical section, the budget 
is replenished and the deadline postponed. 

These two minor changes allow the CBS server to become compliant with the proposed 
approach without modifying its global behavior. 

5.5.5 AN EXAMPLE 

The following example illustrates the usage of the CBS-R server in the presence of 
resource constraints. The task set consists of an aperiodic job J 1 .  handled by a CBS-R 
with maximum budget Q,  = 4 and server period P, = 8 and two periodic tasks r l ,  
7 2 ,  which share two resources R, and Rb; in particular, J1  and rl share resource Rb, 
while rl and rl share resource R , .  The task set parameters are shown in Table 5.2. 

Table 5.2 Parameters of the task set 

tnrk 

J1 
7 1  

7 2  

The schedule produced by CBS-R+SRP is shown in Figure 5.9. When job J 1  arrives at 
time t = 3, its first chunk H1 1 receives a deadline d l  1 = a1 1 + P, = 11 according to 

txp e 
soft aperiodic 
hard periodic 
hard periodic 

Q,o?-C 
4 
2 
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P,o?-T 

8 
10 
24 

R ,  
- 

1 1  
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Rb 
3 

- 



critical section on resource Ra 

critical section on resource Rb 

Figure 5.9 Schedule produced h> CBS-R+SRP. 

the CBS-R algorithm. At that time, 7 2  is already inside a critical section on resource Ra, 
however H 1 . 1  ofjob J1  is ableto preempt, having apreemption level ~ 1 ~ 1  = 118 > n,. 
At time t = 6, J1  tries to access resource Rb, but its residual budget is equal to one and 
is not sufficient to complete the whole critical section. As a consequence, the deadline 
is postponed and the budget replenished. Hence, the next chunk H 1.2  of J1 starts at 
time n l ~ 2  = 6 with deadline d l ~ 2  = 19. The chunk H I . ?  of J 1  cannot start because 
its preemption level ~ 1 . 2  = 1/13 < n,. It follows that 7 2  executes until the end of 
its critical section. When the system ceiling becomes zero, J 1  is able to preempt 7 2 .  

When J1 frees resource Rb, 71 starts executing. It is worth noting that each chunk can 
be blocked for at most the duration of one critical section by the preemption test and, 
once it is started, it will never be blocked for resource contention. 

In the next section, the SRP properties are formally proved and the validity of the 
guarantee test is analyzed. 

5.5.6 PROPERTIES OF THE CBS-R ALGORITHM 

In this section we prove the properties of the CBS-R algorithm. In particular, we show 
that all the SRP properties are preserved for hard periodic tasks and for each chunk of 
the soft aperiodic tasks. Finally, we provide a sufficient guarantee test for verifying the 
schedulability of hybrid task sets consisting of hard and soft tasks. 



Since a preemption level is always inversely proportional to the relative deadline of 
each chunk, the following properties can be derived in a straightforward fashion: 

Property 5.2 A chunk Hz 1, is not allowed to preempt a chunk HI  k ,  unless x ,  1, > n l . ~ .  

Property 5.3 If the preemption level of a chunk H , ~ ,  is greater than the current system 
ceiling, then there are sufficient resources available to meet the requirement of Hz  , 
and the requirement of every chunk that can preempt Hz , . 

Property 5.4 If no chunk H, , is permitted to start until x z  , > n,, then no chunk can 
be blocked after it starts. 

Property 5.5 Under the CBS-R+SRP policy, a chunk H I . ,  can be blocked for at most 
the duration of one critical section. 

Property 5.6 The CBS-R+SRP prevents deadlocks. 

The proofs of properties listed above are similar to those in the original Baker's paper 
[Bak91]. The following lemma shows how hard periodic tasks maintain their behavior 
unchanged: 

Lemma 5.1 Under flze CBS-R+SRP policy, each job of hard periodic task cart be 
blocked at n z o ~ f  once. 

Proof. 
The schedule of hard periodic tasks produced by EDF is the same as the one produced 
by handling each hard periodic task by a dedicated CBS-R server with a maximum 
budget equal to the task WCET and server period equal to the task period; it follows 
that each hard task can never be cut into multiple chunks. Hence, using property (5.5), 
it follows that each instance of a hard periodic task can be blocked for at most the 
duration of one critical section. 0 

The following theorem provides a simple sufficient condition to guarantee the feasi- 
bility of hard tasks when they share resources with soft tasks under the CBS-R+SRP 
algorithm. 



Theorem 5.2 Let r be a t a ~ k  Jet cornposed 0 )  71 lzarcl periodic tasks and 171 soff 
aperiodic taska, each one (soff and h a d )  ~ched~r led  b) a dedicated CBS-R Jervex 
Supporing taskr are ordered b\ decrearirg rrimirniirn preenzptiorl l e~ ,e l  jro that 7i inor > 
T r r ~  n r , ord~ if z < j), tlzerl the hard taskr are rclzedz~lable 17) CBS-R+SRP i f  

~vher-e Q,, is flze nlauinlur~z budget of the dedicafecl CBS-R Jerver and T,, i~ the Jewer 
period. 

Proof. 
Suppose equation (5.8) is satisfied for each 7,. We have to analyze two cases: 

Case A. Task 7, has a relative deadline D, = T,, . Using Baker's guarantee test (see 
Equation (5.3)). it follows that the task set r is schedulable if 

where D, is the relative deadline of task 7, and B;'" is the blocking time r, might 
experience when each 7, has a relative deadline equal to D,. Notice that a task r, can 
block as well as preempt r, varying its relative deadline D,; however, 7, cannot block 
and preempt 7, simultaneously. In fact, if current instance of 7, preempts T,, its absolute 
deadline must be before r, deadline; hence, the same instance of r, cannot also block 
r,, otherwise it should have its deadline after 7, deadline. From considerations above, 
the worst-case scenario happens when 7, makes preemption on r,, that is D, = T,, . 
Hence. it follows that: 



Case B. Task r, has a relative deadline D ,  > Ts . As in C a ~ e  A, the task set r is 
schedulable if 

From the considerations above, it follows that the worst-case scenario also occurs when 
( V j ,  D, = TsJ ) ,  hence 

Notice that tasks are ordered by decreasing maximum preemption level and each task 
T, has the relative deadline set as D, = T,],  except task rZ whose relative deadline is 
Dl > T,, . Hence, from Equation (5.2)  we derive that the new blocking time B :" of 
task 7, is a function of the relative deadline D ,  as follows: 

It is worth noting that the terms B , ,  . .. . BrZ+, are the blocking times computed 
by equation (5.7) and are experienced by hard or soft tasks if the relative deadline of 
each task is set equal to the period of its dedicated server. Finally, a k > 1 will exist 
such that: 

T,, < Dl < T,,~+, =+ B:"'" = EL. 

so, it follows that: 
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The above inequality holds because k must be greater than or equal to i. Hence, it 
follows that the task set is schedulable. 

5.6 RESOURCE CONSTRAINTS IN DYNAMIC 
SYSTEMS 

In &nnrnic real-time sxrtenzs tasks can be activated dynamically and the system has 
no a priori knowledge about their run-time behavior. Resource reservation techniques 
described in Chapter 3 are appropriate for such dynamic systems, because they provide 
temporal isolation and guarantee to hard real-time tasks. 

To provide temporal guarantees in dynamic real-time systems, the idea is to separate the 
"admission test" phase from the actual scheduling phase. When a task is first activated 
in the system and requires a guaranteed execution, it must go through an admission test. 
If the test is passed, the task is admitted into the system with a guaranteed execution 
profile. However, if the task tries to actually execute more than initially requested, the 
task is "slowed down" by the temporal isolation mechanism toprevent extra interference 
with the other tasks in the system. The main difference with a traditional real-time 
system is that a dynamic real-time system has no a-priori knowledge about the tasks 
that will be activated. 

Such a lack of knowledge becomes very restrictive when tasks share resources with 
a synchronization protocol. Using the SRP, the admission test can be performed by 
Equations (5.3) or (5.4), which require the computation of task blocking times by 
Equation (5.2). which in turns requires the knowledge of the r e a o ~ r ~ e  ceilings. To 
compute the resource ceilings the system must know in advance all the resources used 
by the tasks during execution. Such an information is not always readily available. 
Suppose for example that the code of a task is linked together with a shared library 
where shared data are protected by mutexes. The programmer of the task may not be 
aware of such a hidden implementation detail. 

The problem becomes even more difficult if resource reservation techniques are intro- 
duced in general purpose operating systems. In fact, when dealing with hard real-time 



systems, the effort of analyzing the task's code and the relations among tasks is nec- 
essary to guarantee the correctness of the entire application. In a general purpose 
operating system, however, it is not reasonable to ask the developer of a soft real-time 
application to specify the list of all the mutexes and the duration of each critical sec- 
tion during the application initialization, when the admission test is performed. As a 
matter of fact, the developer of a soft real-time task (like an MPEG player) might use a 
software component developed by another company, for which the source code is not 
available and that might use mutexes in its implementation. 

Summarizing, the effectiveness of protocols like the SRP or the PCP is based on the 
a priori knowledge on tasks' behavior. However, especially when dealing with soft 
real-time systems, the behavior of a soft real-time task cannot always be completely 
characterized. As a consequence, global concepts like the syrferri ceilirg or the resource 
ceilirzga cannot be used. 

In the remaining of this chapter, we will show how the problem of priority inversion 
in a dynamic real-time system can be solved without using global a priori knowledge 
about the tasks. The basic idea is to use the PIP, instead of PCP and SRP, as the PIP 
does not require a priori knowledge about the tasks. 

Requirements. In the following, we present a novel protocol and its schedulability 
analysis for hard real-time tasks. The main objective is to simplify the admission test 
as much as possible, by only requiring information about the budget and the period of 
the server associated with each task. Our goal is also to find a scheduling algorithm that 
provides temporal isolation ~viflzout n~akirlg an? aasurnytion on the temporal Deha~ior of 
the taaks. Then, if we are able to exactly characterize a priori the resource requirements 
of a task, this approach can be used to compute the server's budget and period that 
guarantee the task's deadlines. However, if our analysis is not correct, the temporal 
isolation property guarantees that the other tasks in the system will not be affected. 

The scheduling algorithm we are looking for must fulfill the following requirements: 

Jobs arrival times (the a,.,  's) are not known a yriori, but are only revealed on 
line during system execution. Hence, the scheduling strategy cannot require any 
knowledge of future arrival times (e.g., cannot require tasks to be periodic). 

The exact execution requirements c , ,  are also unknown, and can only be deter- 
mined by actually executing J ,  , to completion. Hence, the scheduling algorithm 
cannot require an a yriori upper bound (a "worst-case execution time") on the 
val~le of c,  , . 
The scheduling algorithm has no a yriori knowledge of which resources a task 
will access; it can only be known on line when the task tries to lock a resource. 



Hence, the scheduling algorithm cannot require any a yriori upper bound on the 
worst-case execution time c,,, of a critical section. 

The following information is needed only for performing a schedulability analysis on 
a hard task 7,: 

w the worst-case computation time C,; 

the period TI ; 

w the type (hard or soft) of every task that (directly or indirectly) interacts with 7 ,  

(see Section 5.6.3 for a definition of interaction); 

for each interacting task r,, and for each shared resource Rk, the worst-case 
execution time c, (Rx) of the longest critical section of r, on Rx. 

5.6.1 USING THE PRIORITY INHERITANCE 
PROTOCOL WITH THE CBS 

When applying the PIP to the CBS, it is not clear how to account for blocking times. 
One possible way would be to consider the blocking time using the following admission 
test: 

where B, represents the maximum blocking time experienced by each server. 

However, this solution is not suitable for a dynamic system. In fact, in order to compute 
the maximum blocking time of each server, when a task is created we should "declare" 
the worst-case execution time of the critical sections on each accessed resource. This 
is in contrast with the goal of a scheduler that must be independent of the actual 
requirements of the tasks. In addition, if a soft task holds a critical section for longer 
than declared, arty server could miss its deadline. 

Example 5.2 To highlight this problem, consider the example shown in Figure 5.10. 
In this example, there are three servers S1 = (2.6). S2 = (2.6) and S3 = (6,lX). 
Server S1 is assigned task 71, which accesses a resource R for the entire duration of 
its jobs (i.e., 2 units of time). Server S2 is assigned task 7 2 ,  which does not use any 
resource. Server S3 is assigned task 7-3, which has an execution time of 6 units of time 



blocked 

Figure 5.10 In the example, blocking times are not correctly accounted for 

and accesses resource R for 5 units of time. Now, suppose that 7 3  is a soft task that 
claims to use resource R for only 2 units of time. The system computes a maximum 
blocking time B1 = B2 = 2 for servers S1 and 5'2. According to Equation (5.10), the 
system is schedulable, and all servers can be admitted. 

In the config~~ration of arrival times shown in Figure 5.10, server S1 arrives at time 
t2 and tries to access R. Since it is locked, server S 3  inherits a deadline 6; = 8 and 
continues executing. If no enforcement is put on the worst-case execution time of the 
critical section of task 7-3 on resource R, server S2 misses its deadline. The simple fact 
that 7 - 3  executes more than expected inside the critical section invalidates the PIP and 
task 7 2 ,  which does not use any resource, misses its deadline. 

Another problem that must be considered is the depletion of the server budget while 
the task is in a critical section and has inherited the deadline of another server. In the 
original CBS formulation, the server deadline is postponed and the server budget is 
immediately recharged. When the PIP is applied it is not clear which deadline has to 
be postponed. 

To solve the problems mentioned above, we combined the PIP and the CBS in a single 
algorithm called Bandwidth Inheritance (BWI). The basic idea is that when a task 
executing inside a low-priority server blocks a high-priority server, it inherits the pair 
(q, 6) of the blocked server. 



5.6.2 THE BANDWIDTH INHERITANCE PROTOCOL 

Before starting with the description of the Bandwidth Inheritance protocol, we need to 
understand the meaning of ten~poral i~olation when considering interacting tasks. In 
the original CBS formulation (see Section 3.6.1), tasks are assumed to be independent 
and hence do not interact in any way. When tasks access shared resources, they cannot 
be considered completely independent anymore. What does i~olation mean in such a 
scenario? 

Consider again the example shown in Fig~lre 5.10. Server S1 and server S3 share a 
resource. It is easy to see that if Sg holds the lock for longer than declared, some task 
will probably miss its deadline. Our goal is to prevent task rl and 73 from interfering 
with 72. In fact, since rl and 7-3 both access the same resource it is impossible to 
provide isolation among them. 

5.6.3 BANDWIDTH ISOLATION IN THE PRESENCE 
OF SHARED RESOURCES 

In this section, the concept of intetzcfion among tasks is defined more precisely. Intu- 
itively, a task r, can be affected by a task r, if it can be directly or indirectly blocked 
by 7,. This relation is formalized by the following definition. 

Definition 5.1 A requence BC, = ( T I .  R1. 72. R2. . . . . Rz-1. rz) ,  \tit11 i > 2, ir a 
blocking chain on task 7, if: 

w i f ;  > 2 V k  = 2. . . . . ; - 1, 7~ accerres RA \tit11 a critical section that is rlerted 
irlside a critical section or1 RA -1.  

If ; = 2, then 7, and rz directly share a resource. If ; > 2, then 7, and rz interact 
through nested critical sections. 

As an example, consider the blocking chain BC1 = (rl. R1. 72. R2. r3): 

w task j-3 uses resource R?; 



task 7 2  uses R 2  with a critical section that is nested inside the critical section on 
R1; and 

Notice that, in the above example, rl can be blocked by 7 2  and by 73, but r 3  cannot be 
blocked by rl .  Hence, a blocking chain defines an antisymmetric relation = between 
r, and 7,: 7, T,= 7, but not viceversa. 

In general, there can be more than one chain between two tasks 7 ,  and T,, because they 
can directly or indirectly share more than one resource. Let us enumerate the chains 
starting from task 7, in any order. Let B C , ~  be the h-th blocking chain on r , .  Without 
loss of generality, in the remainder of the paper we will sometimes drop the superscript 
on the chain. Moreover, let r ( B C , )  be the set of tasks 7 2 .  . . . . 7, in the sequence BC, 
(7, excluded), and let R(BC,)  be the set of resources R1. . . . . RZp1  in the sequence 
BC,. 

Definition 5.2 Tlze ref r ,  of tarks tlzat 7na) irltelnct t ~ i f l i  7, is dejirled as f o l l o ~ ~ :  

Set r, comprises all tasks that may directly or indirectly block 7 , .  

Given these definitions, we can state the goals of our scheduling strategy moreprecisely. 
Whether task r, meets its deadlines should depend only on the timing requirements 
of r, and on the worst-case execution time of the critical sections of the tasks in r , . 
Therefore, in order to guarantee a hard task r,, it is only necessary to know the behavior 
of the tasks in r ,  . 

5.6.4 THE PROBLEM OF DEADLOCKS 

If we allow nested critical sections, the problem of deadlocks must be taken into account. 
A deadlock can be avoided by means of static or dynamic policies. One possibility is 
to use a protocol, like the PCP or the SRP, that prevents a deadlock from occ~lrring. 
However, as we pointed out before, we cannot use the PCP or the SRP because they 
require a priori information on the behavior of the tasks. 

To solve the deadlock problem, we consider another static policy. We assume that 
resources are totally ordered, and each task respects the ordering in accessing nested 



critical sections. Thus, if 2 < j, then task r can access a resource R ,  with a critical 
section that is nested inside another critical section on resource R ,. When such order 
is defined, the sequence of resources in any blocking chain is naturally ordered. For 
a deadlock to be possible, a blocking chain must exist in which there is a circular 
relationship like BC = (. . . . R , .  . . . . R,. . . . R,. . . .). Therefore, if the resources are 
ordered a yriori, a deadlock cannot occur. 

If the total order is not respected when accessing nested critical sections, a deadlock 
can still occur. As we will see in the next section, our protocol is able to detect it during 
runtime, but the action to be taken depends on the kind of resources. In the remainder 
of the paper, we shall assume that resources are ordered. 

5.6.5 DESCRIPTION OF THE BANDWIDTH 
INHERITANCE PROTOCOL 

The BWI protocol allows tasks to be executed on more than one server. Every server 
S, maintains a list of served tasks. During runtime, it can happen that a task 7, is in 
the list of more than one server. Let e(1, t )  be the index of the earliest deadline server 
among all the servers that have r, in their list at time t .  Initially, each server S, has only 
its own task 7, in the list, hence 'Vz e(z. 0) = 14. We call server S, the defcidf sen,er 
for task r, . 

As long as no task is blocked, the BWI protocol follows the same rules of the CBS 
algorithm (see Section 3.6.1). In addition, the BWI protocol introduces the following 
rules: 

Rule 10: if task 7, is blocked when accessing a resource R that is locked by task T, ,  
then 7, is added to the list of server S,(, t ) .  If, in turn, 7, is currently blocked 
on some other resource, then the chain of blocked tasks is followed, and server 
S,(, t )  adds all the tasks in the chain to its list, until it finds a ready task5. In this 
way, each server can have more than one task to serve, but only one of these tasks 
is not blocked. 

Rule 11: when task 7, releases resource R ,  if there is any task blocked on R ,  then 7, 

was executing inside a server S,(, t )  # S,. Server S,(, t )  must now discard r, 
from its own list and the first blocked task in the list is now unblocked, let it be 

' ~ o t e  that index i denotes the task's index when it is the argument of function e ( )  and the server's index 
when it is the value of e ( )  

'lf, by follo\+ing the chain, the algorithm finds a task that is already in the list, a deadlock is detected and 
an exception is raised. 
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Figure 5.11 The BWT protocol is applied to the example of Figure 5.10 

7,. All the servers that added 7, to their list while 7, was holding R must discard 
7, and add 7,. 

TheBWI is an inheritance protocol. When a high-priority task r ,  is blocked by a lower- 
priority task T,, T, irlhel-itr server s,(, t )  and the execution time of T, is then charged to 
S, (, t ) .  Therefore, Sf(, t )  = S,(, t ) .  When the budget of S, (, t )  is exhausted, S,(, t) 's 
deadline is postponed and 7, can continue to execute on server S, (, t )  that may now be 
different from S,(, t ) .  

Example 5.3 The behavior of BWI is demonstrated by applying the algorithm to the 
example of Fig~lre 5.10. The resulting schedule is depicted in Fig~lre 5.1 1. 

w At time t = 1, task 7-3, which is initially served by S g ,  locks resource R. 

At time t = 2, server S1 becomes the earliest deadline server and dispatches task 
71. which immediately tries to lock resource R. However, the resource is already 
locked by r:3. According to Rule 10, ~g is added to the list of S1 and rl is blocked. 
Now there are two tasks in Sl 's  list, but only 7-3 is ready. Hence, S,(3.2) = S1 
and S1 dispatches task q .  

w At time t = 3, server S2 is activated but it is not the earliest deadline server. Thus 
7-3 continues to execute. 
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At time t = 4, the budget of server S1 has been depleted. According to Rule 
4 (see Section 3.6.1). the server deadline is postponed to ds t ds + Pl = 14 
and the budget is recharged to q l  + Q1 = 2. Since S1 is no longer the earliest 
deadline server, S2 is selected and task 7-2 is dispatched. 

w At time t  = 6, S1 is again the earliest deadline server; hence task r;: is dispatched. 

At time t = X , 7 j  releases the lock on R. According to Rule (1  l ) ,  71 is unblocked, 
and 7-3 is discarded from the list of server S1. Now Sl 's  list contains only task 71 
and S,(j 2 )  = S3. Server S1 is still the earliest deadline server but its budget has 
been depleted. According to Rule 4, ds t ds + Pl = 20 and ql t Q1 = 2. 

Note that, task r z  is not influenced by the misbehavior of r:3 and completes before its 
deadline. 

5.6.6 PROPERTIES OF BWI 

In this section, we extend the bandwidth isolation property and the hard schedulability 
property to the case of shared resources. Then we derive sufficient conditions for as- 
signing server parameters that guarantee hard tasks. First, we present some preliminary 
results. 

Lemma 5.2 Each acti~,e ren<er lzns nl\vn!s e,xnct/! orle rend! task irl its lirt. 

Proof. 
Initially, no task is blocked and the lemma is true. Suppose that the lemma holds 
just before time tb ,  when task 7, is blocked on resource R by task 7,. After applying 
Rule 10, both servers S, and S, have task 7, in their list, and task 7, is blocked. By 
definition of e ( j .  t b ) ,  S,(, t ,>)  = S l .  Moreover, if rJ is also blocked on another resource, 
the blocking chain is followed and all the blocked tasks are added to S, until the first 
non-blocked task is reached. The lists of all the other servers remain unchanged, thus 
the lemma is true. 

Now, suppose that the lemma is true just before time t ,  . At this time, task r, releases 
the lock on resource R. If no other task was blocked on R, then the lists of all the 
servers remain unchanged. Otherwise, suppose that task 7, was blocked on R and is 
now unblocked: server S, has T~ and 7, in its list and, by applying Rule (1  l ) ,  discards 
7,. The lists of all the other servers remain unchanged, and the lemma holds. 



Theorem 5.3 Corl~ider a syJfern consistirlg of n sewers ~viflz 

~vhich uJeJ the BWI protocol~for accessirlg   ha red resources. Tl~erl, no sen>er in flze 
JyJfern n l i ~ ~ e s  it5 sclzedidirlg deadlirle6. 

Proof. 
Lemma 5.2 implies that, at any time, the earliest deadline server has one and only 
one ready task in its list. As explained in [LipOO], from the viewpoint of the global 
scheduler, the resulting schedule can be regarded as a sequence of real-time jobs whose 
deadlines are equal to the deadlines of the servers (also referred as ch~rrlk~ in [Abe98] 
and [AB98a]). As the earliest deadline server never blocks, the computation times and 
the deadlines of the chunks generated by the server do not depend on the presence 
of shared resources. In [Abe98, LipOO], it was proved that in every interval of time 
the bandwidth demanded by the chunks produced by server S, never exceeds g, 
regardless of the behavior of the served tasks. Since Lemma 5.2 states that each active 
server always has one non blocked task in its list, the previous result is also valid for 
BWI. Hence, from the optimality of EDF and from x;, < 1, it follows that none 
of these chunks misses its deadline. 

Note that the previous theorem states that no ~ched~rlirlg deadline will be missed, but it 
does not say anything about task's deadlines. To performa guarantee on harddeadlines, 
we need a way to relate the tasks' deadlines to the server deadlines, and hence to the 
server parameters. 

Definition 5.3 Given a task r, ,  served 0 )  a rerver S, tl'itlz the BWlpmtocol, the inter- 
ference time I, is dqfined as tlze r~zavin~im time that all other f a ~ k ~  can evecute irl~ide 
Jewer S, for each job of r,. 

Theorem 5.4 If hard f a ~ k  r ,   end b)  a Jerver S, ~viflz flze BWI protocol, wiflz 
pararneter~ Q ,  = C, + I ,  and P, = TI ,  where C, the WCE7: TI i~ the r~z~nir~zun~ 
irl temrri~d time arld I ,  is the rriarirriz~rn interjerence tinze for S , ,  tlierl tark 7, tlill meet 
all itr deadliner, regardlerr of the Delzavior of the other norl-irlteracting tarks irl the 
s) J fern. 

w e  recall that the scheduling deadline is the deadline used hy the server to schedule a s e r ~ e d  job with 
EDF. 



Proof. 
According to Theorem 3.1, the CBS algorithm guarantees that each server S, receives 
up to Q, units of execution every P, units of time. Hence, if each instance of 7 ,  

consumes less than Q ,  and instances are separated by P, or more, server S ,  never 
postpones its scheduling deadline. From Theorem 3.1, f ,  , < 6,. 
Theorem 5.3 extends the result of Theorem 3.1 to BWI. However, when considering the 
BWI protocol, other tasks can execute inside server S , ,  consuming its budget (and hence 
postponing the deadline of server S, even if C, < Q,).  In order to ensure that server 
S, will never postpone its scheduling deadline, we have to consider the interference 
time from those tasks. If I ,  is the maximum time that other tasks can execute inside 
S , ,  it follows that 7, can execute for Q ,  - I,  units of time before exhausting the server 
budget. Hence, the theorem follows. 

Considerations. When our system consists only of hard tasks, BWI is not the best 
protocol to use. In fact, substituting Q ,  and P, into Equation (5.1 1). we obtain: 

which may result in a lower utilization than Equation (5.1) because all the interference 
times are summed together. Hence, if we are dealing with a hard real-time system, it 
is better to use other scheduling strategies like the PCP [SRL90] or the SRP [Bak90], 
for example by using a strategy like the one described in Section 5.5. 

The BWI protocol is more suitable for dynamic real-time systems, where hard, soft 
and non real-time tasks can coexist and it is impossible to perform an off-line analysis 
for the entire system. Of course, this comes at the cost of a lower utilization for hard 
tasks. 

5.6.7 COMPUTING THE INTERFERENCE TIME 

In the general case, the exact computation of the interference I ,  is a complex problem. 
In this section, we restrict our attention to its estimation for the hard tasks. At a first 
glance, the problem may seem similar to the problem of computing the blocking times 
B, for the PIP. However, computing the interference is much more difficult, because 
it depends on the soft tasks: their unpredictable execution may cause the associated 
servers to exhaust their budgets and postpone their deadlines. 

In many cases, it is desirable to guarantee a hard task 7 ,  even if it interacts with soft 
tasks. In fact, sometimes it is possible to know indirectly the worst-case execution 



time of the critical sections of a soft task. For example, consider a hard task and a soft 
task that access the same resource by using common library functions. If the critical 
sections are implemented as library f~mctions with bounded execution time, then we 
can still determine the amount of time a soft task can steal from the server's budget of 
a hard task. Indeed, this is a very common case in a real operating system. 

Therefore, we will now consider the problem of computing I, for a server S, that is 
the default server of a hard task. We start by providing an important definition that 
simplifies the discussion. 

Definition 5.4 Let S, be a ren,er that rlever postporler itr deadlirle ji.e., S, ' r  budget 
ir {lever e,xlzaiisted tvlzile there is a job that har not >etjirlished). We call S, art HRT 
server. If the server deadline can be portported ji.e., a time t erirtr irl t~,lziclz q ,  = 0 
and flze sewed job l z a ~  rzof ye f~ f in i~hed) ,  Ire call S, an SRT server. 

The distinction between HRT and SRT servers depends only on the kind of tasks 
they serve. Both HRT and SRT servers follow the same rules and have the same 
characteristics. However, it may be impossible to know the WCET of a soft task, so 
the corresponding default SRT server can decrease it5 yriorih while executing. The 
presence of SRT servers that interact with HRT servers complicates the computation 
of the interference. 

The following examples show how one or more soft tasks can contribute (directly or 
indirectly) to the interference of a hard task. 

Example 5.4 Consider a hard task r,, served by server S, and a soft task r J ,  served by 
a server S, with period P, < P , .  We do not know the WCET of task 7,. Therefore, we 
assign the budget of S, according to some rule of thumb. Server S, is an SRT server 
as it may postpone its deadline. If 7, executes less than its server budget and the server 
deadline is not postponed, S, cannot preempt S,. If instead r, executes for more than 
its server budget, the server's deadline is postponed. The corresponding situation is 
shown in Figure 5.12a. S, can be preempted by S, while inside a critical section, and 
block T,, contributing to its interference I , .  

Example 5.5 Consider three tasks, 7,. r, and r k ,  served by servers S , ,  S, and S k ,  
respectively, with PI < P, < P k .  Servers S, and Sk are HRT servers, while S, is an 
SRT server. All tasks access resource R. Task r, accesses resource R twice with two 
different critical sections. One possible blocking situation is shown in Figure 5.12b. 
The first time, 7, can be blocked by task 7~ on the first critical section. Then, it can 
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7z in a c~itical  section on R 

rj in a critical section on R 

71, in a critical section on R 
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Figure 5.12 Example of blocking situations with soft tasks: a) A soft task with a short 
period blocks a hard task \+it11 a long period: h) a hard task is hlocked twice on resource R. 
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be preempted by task r, which first locks R ,  and then, before releasing the resource, 
depletes the server budget and postpones its deadline. Thus, when r, executes, it can 
be blocked again on the second critical section on R. Note that both r, and 7~ belong 
to l-,. 

Example 5.6 As a last example, we show one case in which, even if all tasks in T ,  are 
hard tasks, it may happen that 7, interferes with S, with two different critical sections. 
Consider three tasks, r,, T, and TL. Task r, accesses only resource R2 with two critical 
sections. Task 7, accesses two resources R1 and R2 and R2 is accessed twice with 
two critical sections both nested inside the critical section on R 1. Task r k  accesses 
only R1 with one critical section. The only blocking chain starting from task 7, is 
BC, = (T,, R2 ,  7,). Hence T, = (7,). Note that task r k  cannot interfere with task 7,. 

Tasks 7, ,T, and 7~ are assigned servers S,, S, and SA , respectively, with Pk < P, < P, . 
Tasks r, and T, are both hard tasks and we know their WCETs and periods. Task r~ is 
a soft tasks and we do not know its WCET. Finally, we assume to know the d~lration 
of all critical sections (for example, because resources are accessed through shared 
libraries that we are able to analyze). 

We assign budgets and periods of server S, and S, so that they are HRT servers (their 
interference is computed using the algorithm described in Figure 5.14, which will 
be presented later). The budget of server Sx is assigned according to some rule of 
thumb. Since we do not know whether Sk will exhaust its budget while executing, Sx 
is considered an SRT server. 

One possible blocking situation is shown in Figure 5.13. Task 7, locks resource R1  and 
then resource R2 .  At time t l  it is preempted by task 7, that tries to lock resource R 2  
and it is blocked. As a consequence, task 7, inherits server S, and interferes with it for 
the duration of the first critical section on R2.  When 7, releases R2, it returns inside 
its server S, and T, executes completing its critical section on R2. Then, server SA is 
activated and r k  starts executing and tries to lock resource R1. Since R1 is still locked 
by r,, 7~ is blocked and 7, inherits server S x .  While 7, executes inside Sx, it locks 
resource R 2  again. Before releasing R2 ,  server Sk exhausts its budget and postpones 
its deadline. Now the earliest deadline server is S, that continues to execute and tries 
to lock R2 at time t2 .  As a consequence, T, inherits S, and interferes with it for the 
second time. 

From the examples shown above, it is clear that there are many possible situations in 
which a task can interfere with a server. In the next section, we formally present a set 
of lemmas that identify the conditions under which a task can interfere with an HRT 
server. 
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7. in a ciitical section on R2 

T]  in a critical section on R2 

r3 in a ciitical section on RI 

71, in a critical section on R1 

Yk = 0 

Figure 5.13 Example of blocking situation: task 3 can interfere twice with S, ex-en if S, 
and S, are both HRT seners. 

5.6.8 CONDITIONS FOR INTERFERENCE 

We start by defining the set of servers that can be inherited by a task. 

Definition 5.5 Let 9,  be flze sef of all JenvrJ ttiat can be "inlzeritecl" 03 task T,, S ,  
included: 

9, = { S Z 3 B C , .  7, E B C , }  U {S,} . 

A task 7, can only inherit tasks in 9, , hence V t  S e ( ,  f )  E 9 , .  

Definition 5.6 Let 9fRT(z) be flze Jet of all SRT ~ervers  flzaf can be "lnherifecl" b? 
task 7, and interfere w~tlz Jenvr S , :  

9fRT(2) = { S k  S k i s  an SRTsenvr A 3BCx = ( Q ,  . . . ,7, .  . . . . r z ) ) .  

If S ,  ir art SRT ren<ei; i f  is also irlcliided in 9,SRT(1). 

Consider Example 5.6. There is one chain from rx to 7, : B C k  = ( ~ x  . R1, r, , R2, r z ) .  
Therefore, S A  E 9,SRT(1). Set 9,SRT(1) is important in our analysis because it iden- 
tifies the tasks that can inherit an SRT server before interfering with the server S ,  



under analysis. In Example 5.6, task r, can inherit the SRT server Sk which may later 
postpone its deadline. 

Now, we prove some important properties of the BWI protocol. 

Lemma 5.3 If server S, is HR7: tlzerl V t  : d:(, ,) < di. 

Proof. 
When T, inherits a server S,, this server must have a scheduling deadline shorter than d k .  
Recall that, by definition, e(z. t )  is the index of the server with the shortest scheduling 
deadline among all servers inherited by 7, at time t. Hence d;(, ,) = dy < d f .  If S, 
postpones its deadline before the time at which r, releases the resource, r, continues to 
execute inside the server with the shortest deadline among the inherited servers. Since 
S, never postpones its deadline, the lemma follows. 

Lemma 5.4 Gi~,erl a task T,, ordx taskr in T, can be added to server S, and contribute 
to I,. 

Proof. 
It directly follows from Rule (10) and from the definition of r ,. 0 

Lemma 5.5 Lef S, be an HRT sewer: Task 7, ~vi th  clefaillt sen>er S, cannot inferfere 
~v i th  sewer S, 

Proof. 
By contradiction. For r, to interfere with S, it must happen that at a certain time t  1, r, 
locks a resource R;  it is then preempted by server S, at time t L ,  which blocks on some 
resource; T] inherits S, as a consequence of this blocking. Therefore, T, must start 
executing inside its default server before S, arrives, and executes in a server S,(, t 2 )  

with deadline d:(] > df when it is preempted. By hypothesis P, < PI + dy < df . 



Hence, r ,  inherits a server Se(,  t l )  with ds (J  t l )  > d f .  However, from the hypothesis 

follows that server S, never postpones its deadline (S ,  $ 9; RT ( 2 ) ) .  and from Lemma 
5.3, d:(,.tl) < d3 < di. This is a contradiction, hence the lemma follows. 

The next definition precisely identifies the tasks that can interfere with server S, .  

Definition 5.7 A proper blocking chain BC, is a blocking clzairl flzaf corltain~ only 
taskr that can irlterfere t ~ i f l i  S , :  

Vr, E BC, : P, > P, v ISx E * f R T ( 2 )  : PA < P,. 

In some case, we have to consider multiple interferences from the same task and on 
the same resource. The following lemmas restrict the number of possible interference 
situations. 

Lemma 5.6 Lef S,  be an HRT Jenvr  and 7,  a t a ~ k  belorlgirlg to a proper blockirlg 
clzairl BC,. I f f l ie  f o l l o~ ing  cordifion holdr: 

tlzerl T~ ccirl interfere ,tit11 rerl,er S ,  for at rriosf the tvonrt-care ereciifiorl of one critical 
section for each job. 

Proof. 
Suppose r, interferes with S, in two different intervals: the first time in interval [t 1 .  t s ) ,  
the second time in interval [t 3 ,  t4) .  Therefore, at time t s ,  d:(,  t L )  > d i .  If 7, does not 
lock any resource in [t2.  t 3 ) ,  then at time t 3  server S ,  blocks on some resource R  that 
was locked by T, before t l  and that it has not yet released. Therefore, r, interferes 
with S ,  for the duration of the critical section on R, which includes the duration of the 
first critical section ( [ ( R )  > (t4 - t 3 )  + (t2 - t l ) )  and the lemma follows. 

Now suppose r, executes in interval [t2.  t s )  and locks another resource R1. It follows 
that it inherits a server S A  that preempts S ,  with d i  < di. Hence Pk < P,. From the 
hypothesis, S A  is an HRT server and d i  is not postponed before r, releases resource 
R1. Hence, 7,  cannot inherit S, while it is inside Sx , and we fall back in the previous 
case. 



Lemma 5.7 Lef S, be an HRT sewer and R a resource. If flze ~follo~ving corlclitiorl 
lzold~: 

VBC;. BC; = (. . . . R. . .). vsA E 8,SRT(4 : pA P, 

then at 1 7 2 0 J f  one critical ~ecfiorl on R can contribute fo flze inferference I , .  

Proof. 
The proof of this lemma is very similar to the proof of Lemma 5.6. By contradiction. 
Suppose two critical sections on the same resource R contribute to I , .  The first time, 
task rP inherits server S, at time t l  while it is holding the lock on R. The second time, 
task r, inherits server S, at time t 2  > t l  while it is holding the lock on R. It follows 
that: 

w The lock on R was released between t and t 2 ;  

w .T] arrives before t r  and executes on a server S,(,) with d:(,) < d i ;  

w . T ~  acquires the lock on R at t ,  < t 2 ;  

w just before t2.  df < d;(]). 

Hence, at time t,, r, is executing in an inherited server Sk E 8fRT( l )  that postpones 
its deadline before .T, releases the lock on R. Sk must arrive after S, with deadline 
d i  < dk and later postpone its deadline. This contradicts the hypothesis that VSA E 
8 IRT  , ( 2 )  : Pk > P , .  Hence, the lemma follows. 

The previous lemmas restrict the number of combinations that we must analyze when 
computing the interference time. In particular: Lemma 5.6 identifies the conditions 
under which a task can interfere with server S, for at most one critical section; Lemma 
5.7 identifies the conditions under which a certain resource can interfere with server 
S, at most one time. 

Now, the interference due to each blocking chain is quantified. 

Lemma 5.8 The tvorrt-case irlterfererlce for serl,er S, due to a proper blockirlg chain 
BC, = ( r l .  R1.. . . . R z - 1 . 7 ~ )  is 



Proof. 
It simply follows from the definition of proper blocking chain. 0 

Given a proper blocking chain, we need to distinguish the tasks that can interfere with 
S, for at most the duration of one critical section (i.e., that verify the hypothesis of 
Lemma 5.6). from the tasks that can interfere with S, multiple times. 

Definition 5.8 Ghvn a proper blocking chain BC;, lef T ( B c , ~ )  be flze aef offaska in 
B C , ~  that ver(fi flze Izpotheais qf Lenln~a 5.6. Tlzen, 

We do the same thing for the resources. 

Definition 5.9 Ghvn aproyer blocking chain B C , ~ ,  l e f R ( B C ; )  be flze aef qf resources 
in BC; that ver(fi the Izpotheais ofLernrna 5.7. Tlzen, 

5.6.9 ALGORITHM FOR COMPUTING THE 
INTERFERENCE 

The pseudo-code of the algorithm for computing the interference is shown in Fig~lre 
5.14. The term cs ,  denotes the number of critical sections for task r , ,  and C S , ( k )  
denotes the set of proper blocking chains starting from the k-th critical. More formally, 
C S , ( k )  is the set of proper blocking chains of the form B C ;  = (7,. R. .  . .) where R 
is the resource accessed in the k-th critical section of 7,. 

Function i n t e r f  erence (k ,  7 ,  R) is first called with k = 1 , 7  = r ,  and with R 
equal to the set of all possible resources. At line 5, we consider the case in which r ,  is 
not blocked on the k-th critical section. In this case, the function is recursively called 
for the (k+l)-th critical section. 

Lines 6-12 consider the case in which 7 ,  is blocked on the k-th critical section. For each 
proper blocking chain B C ,  in C S ,  ( k ) ,  the algorithm checks if it is a legal blocking 
chain, that is, the resources in R(Bc;) and the tasks in F(Bc: )  have not yet been 
considered in the interference time computation. If so, function ~nterf erence ()  is 



1: mt mter ference(1nt  k ,  set  7, set  R) 
2: { 
3: mt re t  = 0 ;  
4: i f  ( k > c s , )  returnO; 
5: ret  = mter ference(k+l ,  7, R) ; 
6: foreach (BC,  E C S z ( k ) )  { 
7: i f (T (BC:)  C I and R(Bc' ,)  C R) { 
8: I' = I \T(Bc:);  
9: R' = R \ R(Bc,) ; 
10: ret  = max(ret ,  <(BC,) + mter ference(k+l ,  I t ,  R')) ; 
11: ) 
12: ) 
13: return r e t ;  
14: ) 

Figure 5.14 Algorithm for computing the interference time for senel  

recursively called with k' = k + 1 ,  I' = I \ ~ ( B C , ) ,  and R' = R \ R(Bc,) (lines 
8-10). Otherwise, it selects another chain from CS,(k). The recursion stops when 
k > cs,  (line 4). 

The algorithm has exponential complexity, since it explores all possible interference 
situations for server S,. We conjecture that the problem of finding the interference 
time in the general case is NP-Hard. However, the proof of this claim is left as a fut~lre 
work. 

5.7 CONCLUDING REMARKS 

In this chapter, the resource reservation mechanism has been extended to work with 
a more general model where tasks can interact through shared resources protected by 
mutexes. This problem is of paramount importance for the implementation of reso~lrce 
reservation techniques in real operating systems. 

Two different approaches have been analyzed. In the first approach, the CBS algorithm 
has been extended to work with the SRP. In the second approach, the CBS algorithm has 
been extended to work with the PIP. The first approach is best suited in hard real-time 
systems that also include soft real-time aperiodic tasks. The second approach is best 
suited in dynamic real-time systems where there is no a priori knowledge about the 
tasks requirements. 



RESOURCE RECLAIMING 

In most real-time systems, predictability is achieved by enforcing timing constraints on 
application tasks, whose feasibility is guaranteed off line by means of proper schedu- 
lability tests based on worst-case execution time (WCET) estimations. Theoretically, 
such an approach works fine if all the tasks have a regular behavior and all WCETs 
are precisely estimated. In practical cases, however, a precise estimation of WCETs 
is very difficult to achieve, because several low level mechanisms present in modern 
computer architectures (such as interrupts, DMA, pipelining, caching, and prefetch- 
ing) introduce a form of non deterministic behavior in tasks' execution, whose duration 
cannot be predicted in advance. 

A general technique for guaranteeing temporal constraints of hard activities in the pres- 
ence tasks with unpredictable execution is based on the resource reservation approach 
[MST94b, TDS+95, AB98aI (see Chapter 3). Using this methodology, however, the 
overall system's performance becomes quite dependent on a correct resource allo- 
cation. It follows that wrong resource assignments will result in either wasting the 
available resources or lowering tasks responsiveness. Such a problem can be over- 
come by introducing suitable resource reclaiming techniques which are able to exploit 
early completions to satisfy the extra execution requirements of other tasks. 

This chapter introduces some resource reclaiming algorithms that are able to guarantee 
isolation among tasks while relaxing the bandwidth constraints enforced by resource 
reservations. 

6.1 PROBLEMS WITH RESERVATIONS 

According to the resource reservation approach, each task is assigned (off line) a frac- 
tion of the available resources and is handled by a dedicated server, which prevents the 
served task from demanding more than the reserved amount whenever the task experi- 
ences an overrun. Although such a method is essential for achieving predictability in 



the presence of tasks with variable execution times, the overall system's performance 
becomes quite dependent on the actual resource allocation. For example, if the CPU 
bandwidth allocated to a task is much less than its average requested value, the task 
may slow down too much, degrading the system's performance. On the other hand, 
if the allocated bandwidth is much greater than the actual needs, the system will run 
with low efficiency, wasting the available resources. This problem can be overcome by 
introducing reclaiming mechanisms able to share the spare budget left in the servers 
among all the active tasks, so that any overloaded server can benefit by additional spare 
capacities. The following example highlights the problem described above and gives 
a flavor about possible solutions. 

Example. Consider the case shown inFigure 6.1, where three tasks are handled by three 
servers with budgets Q 1  = 1, Q2 = 5, Qg = 3, and periods Tl = 4, T2 = 10, & = 12,  
respectively. At time t = 6, job 7 2 . 1  completes earlier with respect to the allocated 
budget, whereas job rs~l requires one extra unit of time. Figure 6 . la  illustrates the 
classical case in which no reclaiming is used and tasks are served by the plain Corlstarlt 
Bandwidflz Senvr  (CBS) [AB98a] algorithm. Notice that, in spite of the budget saved 
by 7 2 . 1 ,  the third server is forced to postpone its current deadline when its budget is 
exhausted (it happens at time t = 9). As shown in Figure 6.lb, however, we observe 
that the spare capacity saved by 7 2 . 1  co~dd be used by ~ ~ 3 . 1  to advance its execution and 
prevent the server from postponing its deadline. The intuition is that early completions 
of tasks generate spare capacities that are wasted by traditional resource reservation 
approaches, unless resource reclaiming is adopted to relax the bandwidth constraints, 
still providing isolation among tasks. 

In the next sections, we present two scheduling techniques, the CAyacig SHaring 
(CASH) algorithm [CBSOO] and the Greedy Reclamation of Url~rseclBand~viclflz (GRUB) 
algorithm [GBOO], which are able to reclaim unused resources (in terms of CPU ca- 
pacities) while guaranteeing isolation among tasks. Both techniques handle hybrid 
task sets consisting of hard periodic tasks and soft aperiodic tasks. Moreover, both 
algorithms rely on the following assumptions: 

1. tasks are scheduled by a dynamic priority assignment, namely, the Earliest Dead- 
line First (EDF) algorithm; 

2. tasks are assumed to be independent, that is, they do not compete for gaining 
access to shared and mutual exclusive resources; 

3. each task r, is handled by a dedicated server S,, which is assigned a fraction of 
the processor bandwidth; 

4. both CASH and GRUB build upon the Constarlt Band\~idfli Server. 
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Figure 6.1 O~erruns handled by a plain CBS (a) versus oLerruns handled hy a CBS with 
a resonrce reclaiming mechanism (b). 

6.2 THE CASH ALGORITHM 

The CAyacig SHaring (CASH) algorithm [CBSOO] is a general scheduling methodol- 
ogy for managing overruns in a controlled fashion by reclaiming spare capacities on 
line. In particular, this technique allows to 

w achieve isolation among tasks, through a resource reservation mechanism which 
bounds the effects of task overruns; 

w perform efficient reclaiming of the unused computation times, through a global 
capacity sharing mechanism that allows exploiting early completions in order to 
relax the bandwidth constraints enforced by isolation; 

handle tasks with different criticality and flexible timing constraints, to enhance 
the performance of those real-time applications which allow a certain degree of 
flexibility. 



The CASH mechanism works in conjunction with the Constant Band~vidth S e n v r  
(CBS). Each task is handled by a dedicated CBS and the reclaiming mechanism uses a 
global queue, the CASH queue, of spare capacities ordered by deadline. Whenever a 
task completes its execution and its server budget is greater than zero, such a residual 
capacity is stored in the CASH queue along with its deadline and can be used by any 
active task to advance its execution. When using a spare capacity, the task can be 
scheduled using the corresponding server deadline associated with the spare capacity. 
In this way, each task can use its own capacity along with the residual capacities deriving 
by the other servers. 

Whenever a new task instance is scheduled for execution, the server tries to use the 
residual capacities with deadlines less than or equal to the one assigned to the served 
instance; if these capacities are exhausted and the instance is not completed, the server 
starts using its own capacity. Every time a task ends its execution and the server becomes 
idle, the residual capacity (if any) is inserted with its deadline in the global queue 
of available capacities. Spare capacities are ordered by deadline and are consumed 
according to an EDF policy. The main benefit of the proposed reclaiming mechanism 
is to reduce the number of deadline shifts (typical of the CBS), so enhancing aperiodic 
tasks responsiveness. Notice that, due to the isolation mechanism introduced by the 
multiple server approach, there are no particular restrictions on the task model that 
can be handled by the CASH algorithm. Hence, tasks can be hard, soft, periodic, or 
aperiodic. 

CASH RULES 

The precise behavior of the CASH algorithm is defined by the following rules. 

I .  Each server S, is characterized by a budget c ,  and by an ordered pair (Q,. T, ) ,  
where Q,  is the maximum budget and T, is the period of the server. The ratio 
Cz = Q,/T, is denoted as the server bandwidth. At each instant, a fixed deadline 
d, k is associated with the server. At the beginning Vz. = 0. 

2. Each task instance 7, .  , handled by server S, is assigned a dynamic deadline equal 
to the current server deadline d, k .  

3. A server S, is said to be active at time t if there are pending instances. A server 
is said to be idle at time t if it is not active. 

4. When a task instance 7, , arrives and the server is idle, the server generates a new 
deadline d l  A = m n s ( r , ,  . d, k - l )  + T, and c, is recharged at the maximum value 
Q1. 
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5 .  When a task instance 7, , arrives and the server is active the request is enqueued 
in a queue of pending jobs according to a given (arbitrary) discipline. 

6. Whenever instance r, , is scheduled for execution, the server S, uses the capacity 
c, in the CASH queue (if there is one) with the earliest deadline d,, such that 
d, < d , ~ ~ ,  otherwise its own capacity c, is used. 

7. Whenever job r,~, executes, the used budget c, or c, is decreased by the same 
amount. When c, becomes equal to zero, it is extracted from the CASH queue 
and the next capacity in the queue with deadline less than or equal to d ,  k can be 
used. 

8. When the server is active and c, becomes equal to zero, the server budget is 
recharged at the maximum value Q ,  and a new server deadline is generated as 
dl k  = dl k - 1  + TI .  

9. When a task instance finishes, the next pending instance, if any, is served using 
the current budget and deadline. If there are no pending jobs, the server becomes 
idle, the residual capacity c, > 0 (if any) is inserted in the CASH queue with 
deadline equal to the server deadline, and c, is set equal to zero. 

10. Whenever the processor becomes idle for an interval of time A, the capacity c ,  
(if exists) with the earliest deadline in the CASH queue is decreased by the same 
amount of time until the CASH queue becomes empty. 

AN EXAMPLE 

To better understand the proposed approach, we will describe a simple example which 
shows how the CASH reclaiming algorithm works. Consider a task set consisting of 
two periodic tasks, rl and 72, with periods Pl = 4 and P2 = 8, maxim~lm execution 
times (7;""' = 4 and CyU' = 3, and average execution times C,""" 3 and C,""" 2. 
Each task is scheduled by a dedicated CBS having a period equal to the task period 
and a budget equal to the average execution time. Hence, a task completing before 
its average execution time saves some budget, whereas it experiences an overrun if it 
completes after. A possible execution of the task set is reported in Fig~lre 6.2, which 
also shows the capacity of each server and the residual capacities generated by each 
task. At time t = 2, task 71 has an early completion and a residual capacity equal to 
one with deadline equal to 4 becomes available. After that, r 2  consumes the above 
residual capacity before starting to use its own capacity; hence, at time t = 4, the 
overrun experienced by 72 is handled without postponing its deadline. Notice that 
each task tries to use the residual capacities before using its own capacity and that 
whenever an idle interval occ~lrs (e.g., interval [19, 20]), the residual capacity with 



the earliest deadline has to be discharged by the same amount in order to guarantee a 
correct behavior. 

The example above shows that overruns can be handled efficiently without postponing 
any deadline. A classical CBS instead, would have postponed some deadlines in order 
to guarantee tasks isolation. Clearly, if all the tasks consume their allocated budget, no 
reclaiming can be done and this method performs as a plain CBS. However, this situation 
is very rare in practical situations, hence the CASH algorithm helps in improving the 
average system's performance. 

overrun n 
normal execution 

= 1 

= 2 

Residual 
capacities 

Figure 6.2 Euample of schedule produced by CBS+CASH. 

6.2.1 SCHEDULABILITY ANALYSIS 

In this section we analyze the schedulability condition for a hybrid task set consisting 
of hard and soft periodic tasks. Each task is scheduled using a dedicated CBS. If each 
hard periodic task is scheduled by a server with a maximum budget equal to the task 
WCET and with a period equal to the task period, it behaves like a standard hard task 
scheduled by EDF. The difference is that each task can gain and use extra capacities 
and yields its residual capacity to other tasks. Such a run-time capacity exchange, 
however, does not affect schedulability; thus, the task set can be guaranteed using the 
classical Liu and Layland condition: 
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where Q ,  is the maximum server budget and T I  is the server period. Before proving 
the schedulability condition, the following lemma will prove that all the generated 
capacities are exhausted before their respective deadlines. 

Theorem 6.1 Given a set F of capacity Oared sen,ers along ititlz the CASH algoritlznz, 
each capacity generated diirirg the rchedzdirlg is erhaurted before itr deadlirle if ard 
ordy if: 

~vher-e Q,  is flze n~auin~ur~z Jerver budget and T ,  is flze ~ e r v e r  period. 

Proof. 
If. Assume equation (6.1) holds and suppose that a capacity c* is not exhausted at time 
t " ,  when the corresponding deadline is reached. Let t  a > 0 be the last time before 
t" at which no capacity is discharging; that is, the last instant before t "  during which 
the CPU is idle and the CASH queue is empty (if there is no such time, set t ,  = 0). 
Let t b  > 0 be the last time before t*  at which a capacity with deadline after t*  is 
discharging (if there is no such time, set t b  = 0). If we take t  = nan.x(t,. t b ) ,  time t  
has the property that only capacities created after t  and with deadline less than or equal 
to t" are used d~lring [t.  t " ] .  Let Q T ( t l ,  t 2 )  be the sum of capacities created after t l  
and with deadline less than or equal to t  2 ;  since a capacity misses its deadline at time 
t * ,  it must be that: 

Q r ( t .  t * )  > (t* - t )  

In the interval [t.  t * ] ,  we can write that: 

which is a contradiction. 

Ordy if. Suppose that El  $ > 1. Then, we show there exists an interval [ t l .  t 2 ]  in 
which Q T ( t l .  t 2 )  > ( t2  - t l ) .  Assume that all the servers are activated at time 0; then, 
for L = lcm(T1. .... T,,) we can write that: 

hence, the "only ifcondition" follows. 0 

We now formally prove the schedulability condition with the following theorem: 



Theorem 6.2 Let ?;, be a set qfyeriodic lzard tasks, wlzere eeaclz t a ~ k  r, i~ ~ched~r led  
b? a dedicafecl Jerver ~v i th  Q ,  = Cpa" and T, = P,, arzd let I, be a Jef qf  oft f a s k ~  
scheduled by a group of serverr tl'itlz total uti1i;ation C "ft. Then, 3, is feasible ifand 
or1ly if 

Proof. 
The theorem directly follows from Lemma 6.1; in fact, we can notice that each hard 
task instance has available at least its own capacity equal to the task WCET. Lemma 
6.1 states that each capacity is always discharged before its deadline, hence it follows 
that each hard task instance has to finish by its deadline. 

It is worth noting that Theorem 6.2 also holds under a generic capacity-based server 
having a periodic behavior and a bandwidth C,. 

6.3 THE GRUB ALGORITHM 

The Greedy Reclarizafiorl of Uniired Banhvidtli (GRUB) algorithm [GBOO] is a server- 
based global scheduling algorithm which is able to provide performance guarantee with 
the ability of reclain~ing unused processor capacity ("bandwidth). According to the 
GRUB algorithm, each task is executed under a dedicated server S,, characterized by 
two parameters: a plncerror rlzare C, ,  and a period P,. 

When a set of tasks is scheduled by distinct servers to provide isolation in terms of 
consumed bandwidth, leftover CPU cycles can be originated by one or more servers 
which have no outstanding jobs waiting for execution. As a consequence, a resource 
reclaiming capability is desirable in order to achieve efficient exploitation of the avail- 
able resources (i.e., the CPU). Notice that flze ~rrzused cc~yacih reclar~zatiorz is ach i e~wl  
bx GRUB tvitlzout mix additiorlal cost or conzple.rity. In fact, since the resource reclaim- 
ing feature is a direct consequence of the server scheduling rules (namely, the deadline 
assignment rule which affects the scheduling priorities under EDF), the computational 
complexity of GRUB algorithm is the same as that of previously-proposed schedulers 
(CBS). Moreover, while capacity reclamation does not directly affect the performance 
guarantee (since in the worst case there may be no idle servers and hence no excess 
capacity to reclaim), it tends to result in improved system performance (compared to 
capacity based servers like CBS) still enforcing isolation among tasks. 
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6.3.1 GRUB DYNAMIC VARIABLES 

In the following, we provide a detailed description of the GRUB algorithm, which is 
the global scheduler. Assuming that each task 7 ,  is scheduled by a dedicated server 
S , ,  GRUB maintains a global system variable ( j s t e n ~  ufilizafion C ( t ) )  in addition to 
three dynamic variables for each server S , :  a server dendlirle d,, a server ~irtiinl time 
L:, and a server rtnte. 

Intuitively, the value of d ,  at each instant is a measure of the yriorih that GRUB 
algorithm accords server S, at that instant - GRUB will essentially be performing 
earliest deadline first (EDF) scheduling based upon these d l  values. 

The value of 1; at any time is a measuie of how much of serve1 S,'s "reserved" 
service has been consumed by that time. GRUB algolithm will attempt to update 
the value of 1; in such a manner that, a f  each mtarzt in time, Jerver S, l za~  received 
the same anlounf o f~erv i ce  that ~t would lzave recenvd O j  t m e  1; fexecufing on 
n dedicated processor of ccipncltj C ,  . 

At any instant in time during run-time, each server S, is in one of three states: 
inactive, activecontending, or activeNonContending. Intuitively at time t o  a 
server is in the activecontending state if it has some jobs awaiting execution 
at that time; in the activeNonContending state if it has completed all jobs that 
arrived prior to to ,  but in doing so has "used up" its share of the processor until 
beyond t o  (i.e., its virtual time is greater than to) ;  and in the inactive state if it has 
no jobs awaiting execution at time t o ,  and it has rzof used up its processor share 
beyond to .  Notice that a server is said to be active at time t if it is in either the 
activecontending or the activeNonContending state, and irlncti~,e otherwise. 

The GRUB algorithm maintains an additional variable, called the rjsteriz iiti1i;n- 
fion L7(t), which at each instant in time is equal to the sum of the capacities L7, 
of all servers S, that are active at that instant in time. L7(t) is initially set equal to 
zero. 

GRUB is responsible for updating the values of these variables, and will make use of 
these variables in order to determine which job to execute at each instant in time. At 
each time, GRUB chooses for execution some server that is in its activecontending 
state (if there are no such servers, then the processor is idled). From the servers that 
are in their activecontending state, GRUB algorithm chooses for execution the server 
with the earliest deadline. 

While S, is executing, its virtual time L: increases; while S, is not executing L: does 
not change. If at any time this virtual time becomes equal to the server deadline 



(1.; == d,), then the deadline parameter is incremented by P, (dl t d, + P,). Notice 
that this may cause S, to no longer be the earliest-deadline active server, in which case 
it may surrender control of the processor to an earlier-deadline server. 

6.3.2 GRUB RULES 

After introducing the dynamic variables needed by GRUB, we now formally describe 
how the GRUB algorithm updates these variables, so that it can determine which job 
has to execute at each instant in time. 

1. If server S, is in the inactive state and a job J,' arrives (at time-instant a:) ,  then 
the following code is executed 

and server S, enters the activecontending state. 

2. When a job J:-' of S, completes (notice that S, must then be in its activecon- 
tending state), the action taken depends upon whether the next job J J  of S, has 
already arrived. 

(a) If so, then the deadline parameter d ,  is updated as follows: 

and the server remains in the activecontending state. 

(b) If there is no job of S, awaiting execution, then server S, changes state and 
enters the activeNonContending state. 

3. For server S, to be in the activeNonContending state at any instant t ,  it is re- 
quired that 1: > t.  If this is not so, (either immediately upon transiting into 
this state, or because time has elapsed but does not change for servers in the 
activeNonContending state), then the server enters the inactive state. 

4. If a new job J J  arrives while server S, is in the activeNonContending state, then 
the deadline parameter d l  is updated as follows: 

and server S, returns to the activecontending state. 
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Figure 6.3 GRUB state transition diagram: node labels refer to sene l  states and edges 
numbers to transition rules. 

5 .  While a job of server S ,  is executing, the server virtual time increases at a rate 
c/ LT1 : 

. if S, is executing 
0. otherwise 

If 1.; becomes equal to d l ,  then d l  is incremented by an amount PI ( d ,  + d ,  + P,). 

6. There is one additional possible state change: if the processor is ever idle, then 
all servers in the system return to their inactive state. 

Figure 6.3 shows the state transition diagram according to the above rules 

Notice that the rate the virtual time is increasing at determines whether a server S ,  
reclaims unused capacity or not. In fact, suppose that C is equal to one (none of 
the servers is inactive and the system is fully utilized); intuitively, S ,  will be allowed 
to execute for C, P, units within a server period P, . Hence, since I ; is incremented 
at a rate 1 / L ;  while S, is executing. In this case, GRUB is equivalent to the CBS 
algorithm and performance can be guaranteed as done for the CBS. However, if c 
becomes less than one, the resource reclaiming capability of GRUB is enabled and the 
current executing server S ,  ( I ;  is incremented at a rate C/C, )  starts to reclaim unused 
bandwidth executing for (C ,  P,)/C units within a server period P,. 

In using excess processor capacity, though, we must be very careful not to end up using 
any of thefuture capacity of currently inactive servers, since we do not know when the 



currently inactive servers will become active. To this purpose, the slope of the virtual 
time Lr(t) is dynamically updated as any server changes its current state. 

As an example of the resource reclaiming capability of GRUB, just consider two servers 
S1 and S2, both having bandwidth utilization C1 = C2 = 0.5 and server period 
PI = P2 = 6. Assume that S1 has a pending request (job 7 ; )  at time t = 0, and 
consider two possible cases: 1) server S2 is active; 2) server S2 is inactive. In the first 
case (S2 active), server S1 will assign a deadline d l  = a: + Pl = 0 + 6 to job rf 
and % y l ( t )  = C/C1 = 110.5 = 2; it follows that r: can execute for three units of 
time before postponing the server deadline by a server period (no reclaiming occurs 
and GRUB behaves like the CBS). On the other hand, if S2 is inactive, server S1 will 
assign the same deadline d l  = G to job r: as before, but the server virtual time will 
increase at a rate $1; ( t )  = L7/C1 = 0.510.5 = 1; it follows that rll can execute for 
six units of time before postponing the server deadline by a server period. In the latter 
case, the reserved bandwidth of server S2 is completely reclaimed by server S1 fully 
utilizing the processor. 

The behavior of the GRUB algorithm will be clarified by the following example. 

EXAMPLE 

Consider a system with fo~lr  servers with the following parameters: 

Let us assume that servers S3 and S4, which together have (C3 + L;) = 0.5 of the 
total processor capacity, are not active at all - this unused processor capacity could 
in fact have been allocated to servers S1 and S2.  Figure 6.4 shows the server behavior 
when the following sequence of job arrivals occurs: 

w Initially, all four servers are in the inactive state. 

w Job rf arrives at a: = 0; consequently, server S1 changes state and enters the 
activecontending state, with 1'1 set to 0 and dl  to 5. 

w Job 721 also arrives at a: = 0, thus server S2 changes state and enters the active- 
Contending state, with 7.72 set to 0 and dl to 9. 
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Figure 6.4 Schedule produced by the GRUB algorithm. 

L7 - the total capacity of all c~lrrently active servers - is equal to (C1 + Cp) = 

(0.2 + 0.3) = 0.5. 

According to EDF, task 7: (served by S1) is selected for execution, and 1.; is 
incremented at a rate C/C1 = 0.5/0.2 = 2.5. At time 2 , h  becomes equal to d l ;  
assuming that the computation time of 7; is C: = 2, T~~ completes execution at 
this instant, and enters the activeNonContending state. 

Server S p  now becomes the only activecontending server in the system, and 
consequently 7; is executed. 1% is incremented at a rate L7/C2 = 0.510.3. 

At time 5, S1 enters the inactive state. Now, L7 becomes equal to LT2 = 0.3, and 
1% (5) is equal to (0.510.3) x 3 = 5. From now on, 1; is incremented at a rate of 
0.3/0.3 = 1. 

Assuming that ci is equal to 5, T: completes execution at instant 7 and enters the 
activeNonContending state - at this time, 1; has increased to 7. 

Since V2 (7) = 7, S 2  returns to the inactive state at instant 7 

If the GRUB algorithm is substituted by four CBS servers with same bandwidth and 
server periods, job r: would execute for one unit of time before exhausting its server 
budget. As a consequence, at time t = 1, server S1 would postpone its deadline by 
a server period (d l  = dl  + Pl = 5 + 5 = 10) releasing the CPU to 7;. Similarly, 
job would execute for 2.7 units of time before exhausting its server budget; hence, 
at time t = 3.7, server S2 would postpone its deadline by a server period (d l  = 

dl + PI = 9 + 9 = 18). Finally, both jobs would complete without postponing their 
server deadline again. The schedule in this case is depicted in Figure 6.5. 



Figure 6.5 Schedule produced hy the CBS sener  without band\+idth reclamation 

Comparing the two schedules generated in the example above, we immediately see 
one of the advantages of the GRUB algorithm over non-reclaiming servers (like CBS): 
since a reclaiming scheduler like GRUB is likely to execute a job for a longer interval 
than a non-reclaiming scheduler, we would in general expect to see individual jobs 
con~plefe earlier in GRUB algorithm than in non-reclaiming servers. 

6.3.3 FORMAL ANALYSIS OF GRUB 

This section shows that the GRUB algorithm closely emulates the performance that 
servers would experience if they were executing on dedicated processors with lower 
capacity. 

To precisely evaluate the GRUB ability of emulating a dedicated "virtual" processor, 
we first characterize the system behavior when each task 7, executes on a dedicated 
processor of capacity C , ;  then, we show how well the GRUB algorithm is able to 
emulate a virtual dedicated processor for each server. 

Dedicated processor. Let A: and F;' be the instants that job r: would begin and 
complete execution, respectively, if server S, were executing on a dedicated processor 
of capacity C,. The following expressions for 4; and F;' can be easily derived: 

-4; = a,' 



Resour-ce Reclaiming 

GRUB virtual processor. In 2000, Lipari and Baruah [GBOO] bounded the error 
introduced by the GRUB algorithm when emulating a virtual processor of capacity L7,. 
In fact, they proved that the following inequality holds: 

where f i  denotes the time at which GRUB completes execution of job 7; 

By using the results of Equation 6.3 and Equation 6.4, the following theorem can be 
easily proved: 

Theorem 6.3 The conzyletiorl finze qf a job qf senvr  S ,  ~vlzerl sclzedidecl b? flze GRUB 
algoritlznz i~ l e s ~  flzan PI f in~e imifs affer flze conzyletion-firm qf the m n e  job wlzen S ,  
ha5 it5 oIvn dedicafecl yrocesso~ 

Proof. 
Observe that 

= F;/ + P, (By Equation 6.3) 

Thus, f: (the completion time of the j-th job of server S ,  when scheduledby the GRUB 
algorithm) is strictly less than PI plus F,' (the completion-time of the same job when 
S, has its own dedicated processor). 

It is worth noting that the above theorem helps to decide how to set the server period, 
which is a system parameter. In fact, the period P, is an indication of the "granularity" 



of time from server S, 's  perspective; as a consequence, the smaller the value of P,, 
the more fine-grained the notion of real time for S , ,  even though an additional cost is 
introduced in terms of algorithm overhead (the deadline postponement of each server 
is a function of the server period). 

6.4 OTHER FORMS OF RECLAIMING 

In the previous sections, the CASH and GRUB algorithms have been described. While 
those algorithms represent powerful solutions when trying to reuse reserved but under- 
utilized CPU bandwidth, they cannot always be used due to their implementation 
costs. For instance, real-time embedded devices equipped with a microcontroller are 
very resource constrained in terms of available memory and CPU speed. In such a 
scenario, a light real-time operating system (in terms of memory footprint and context 
switch overhead) is a must due to the limited availability of resources. Moreover, 
these devices have also a limited temporal horizon when storing a variable with dense 
granularity. As a consequence, consecutive deadline postponements could overflow 
the server deadline variable introducing dangerous flaws in the kernel. 

To limit these problems while still providing effective scheduling policies, we now 
introduce two simple reclaiming techniques characterized by a low computational cost, 
making them more suitable for small embedded devices. 

6.4.1 ADVANCING SERVER DEADLINES 

When using a CBS server, a task requiring additional CPU time can immediately 
recharge its budget and continue its execution with a postponed server deadline. Such 
a CBS property allows exploiting free CPU cycles whenever possible. However, too 
many consecutive deadline postponements could cause the server priority to become 
lower than that of the other servers. Such a problem does not occur when a server 
reclaims spare capacity from another under-loaded server, but it only appears when 
consuming its own bandwidth. This problem is illustrated in Fig~lre 6.6, where there 
are two servers, S1 and S2 with maximum budget Q 1 = 1, Q2 = 3, and server periods 
Tl = 4 and T2 = 4, respectively. In the example, server S1 receives five requests of 
duration C,,, = 1 at times 0 .1 .2 .3 .4  (they are indicated by dashed arrows). Notice 
that, while server S1 is backlogged in interval [O. 41 and four deadline postponements 
are required to serve the aperiodic jobs, server S2 is idle up to time t = 4, when it 
receives its first request of d~lration C,,, = 3. Unfortunately, when server S2 becomes 
active with deadline d2 = 8, S1 deadline is postponed until time t = 20; it follows 
that S1 suffers starvation within interval [4. 131 even though S2 was idle during interval 
[O. 41. 
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I I I I job arrivals 
I I I 

Figure 6.6 Example of CBS set.\-ers without resource reclaiming. 

This problem, along with the limited temporal horizon problem of the server deadline, 
can be effectively contained by exploiting a well known property of the idle times. In 
fact, under static and dynamic priority scheduling, the following property holds: 

Lemma 6.1 (Idle interval lemma) Given an! schedule 0, if art idle irttennl [ to .  t] 
occurs, the schediilabilit~ ofjobr releared at or after t is {tot ciffected 01 jobs rchedzded 
before t. Hence, ar fcir ar the task set rclzedulabilit\ is concerned, in rtant t cart be 
chosen as flze new j s f en l  Jtarf finze, ignoring all flze ~ c h e d ~ r h g  el>erlfJ before t. 

A direct consequence of the idle irtterval lerrirria is to allow all the CBS servers to 
restart their budget and deadline every time an idle interval occurs. It is worth noting 
that the idle time interval lemma also applies to a "zero length" idle interval (t 0 = t). 
Such an anomalous idle interval occurs at time t whenever all the jobs released before 
t complete by instant t and at least one new job (J,,,, ) is released exactly at t .  The 
visible effect of this anomaly is that the processor is never idle, but from a scheduling 
point of view this event can be considered as a "zero length" idle interval ' occurring at 
time t .  This type of reclaiming, called Deadline Advancement, is illustrated in Figure 
6.7, where the same task set of Figure 6.6 is analyzed. 

According to the example above, it can be noticed that a zero length idle interval occurs 
at times t = 1 ,2 .3 ,1 ;  as a consequence, server S1 can be restarted four times before 
server Sp starts to serve its first request. After that, both servers behave according to 
the classical CBS rules. It follows that the last S1 job completes at time t = 8, instead 
o f t  = 14, by exploiting the deadline advancement technique. 

I ~ h e  reader can be easily con\-inced just imagining to clelay JIT,,.. by an amount t arbitrarily small: it 
immediately follo\+s that an idle interval [t. t + c]  occurs, so that the validity of the idle intenal lemma is 
finally claimecl. 



Figure 6.7 Example of CBS setxeta mith cleaclline achancernent 

CBS WITH BUDGET ADJUSTMENT 

In this section we introduce another "light" (in terms of computational cost) technique 
that relies on the key idea of the CASH algorithm. To ensure the temporal correctness 
of the system, however, this method does not require maintaining a sorted queue of 
spare capacities, nor keeping track of the CPU idle intervals. Even though CASH 
orders all the current available capacities by absolute deadline to allow more than one 
server to have benefit from the reclaiming strategy, it is worth noting that, most of the 
time, only the subsequent active CBS with the highest priority will exploit the extra 
capacity, inheriting it from the previous running CBS. 

According to the consideration above, the CASH algorithm can be significantly sim- 
plified, still achieving reasonable performance in terms of resource reclaiming. The 
resulting approach, named Budget Adjustment, is an extension of the CBS server by 
adding the following rule: 

w Rule: Whenever the current executing CBS server S, becomes idle and has some 
residual capacity (a,) left, such an amount is transferred to the subsequent CBS 
server Sb (if any) present in the scheduler (EDF) ready queue. If there is no 
available server, the residual capacity is not transferred, but it is maintained by 
the idle CBS according to the classical CBS rules. 

The validity of the above rule directly derives from the CASH properties. In fact, since 
the EDF ready queue is ordered by increasing deadlines, the residual capacity transfer 
can only occur from a server S, to a server Sb with absolute deadline db > d,. By 
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contradiction, if d h  < d, , server Sh would be inserted at the head of the ready queue 
and a preemption would occur. Hence, according to the CASH rules, as the absolute 
deadline d b  is greater than or equal to the absolute deadline d,, the capacity transfer 
from server S, to server Sb can be safely performed. 

To better understand the difference between CASH and Budget Ac l j~r~f i i~enf ,  the task 
set of the example reported in Section 6.2 (used for the CASH algorithm) is illustrated 
here to show how this simple technique is able to reclaim spare resources. 

Consider a task set consisting of two periodic tasks, rl and 7 2 ,  with periods PI = 4 
and P2 = 8, maxim~lm execution times C;""" = 1 and C,"" = 3. and average 
execution times C,""" 3 and CiLS  = 2. Each task is scheduled by a dedicated CBS 
having a period equal to the task period and a budget equal to the average execution 
time. Hence, a task completing before its average execution time saves some budget, 
whereas it experiences an overrun if it completes after. A possible execution of the 
task set is reported in Figure 6.8, which also shows the capacity of each server and the 
capacity transfer among servers whenever the "Budget Adjustment" policy allows it. 

o\eiiun Ez 
normal execution / 

+ 1 

20 24 

t 
0 34 

Figure 6.8 Example of resource reclaiming \+it11 the Budget Adjustment method 

At time t = 2, task rl has an early completion, thus a residual capacity equal to 
one is transferred to task 7 2 .  After that, r2 consumes the above residual capacity 
before starting to use its own capacity; hence, at time t = 4, a 7 2  overrun is handled 
without postponing its deadline. Notice that each task tries to use residual capacities 
before using its own capacity and that, whenever an idle interval occurs (e.g., interval 
[19, 201). the residual capacity (if any) cannot be transferred to any other server, but 
it is held by its owner to maintain the task set feasibility. Comparing this example 
with the one obtained by CASH (see Figure 6.2), it is worth noting that the resulting 
schedule is identical, except for the residual capacity of r 2  at time t = 19, which 



cannot be exploited by the next instance of 71. As a result, the overrun of 71 at time 
t = 23 causes a deadline postponement and a budget recharge to complete its execution. 
When CASH is used, such a deadline postponement is not needed, so increasing system 
performance. As a final remark, it is worth noting that, whenever a CBS server is used 
to handle aperiodic tasks, both the CASH and the Budget Adjustment technique can 
reduce aperiodic responsiveness due to the unpredictable arrivals of aperiodic requests. 
As a consequence, the user could decide to prevent an aperiodic server from freeing 
its spare capacity, since an aperiodic request might need it later. In such a case, spare 
capacities are generated only by periodic tasks and exploited either by periodic or 
aperiodic activities. 



QUALITY OF SERVICE 
MANAGEMENT 

In the previous chapters, the term "QoS" has been informally defined as something 
related to the quality perceived by the final user, making the implicit assumption that 
the QoS level is related to the number of respected deadlines. 

To provide a more formal QoS definition, the quality achieved by each application must 
be quantified in some way, and this is usually done by associating a utility value to each 
task or application. Hence, QoS management can be defined as a resource allocation 
problem, and mathematical tools for solving it already exist. 

The fundamental issue for formulating and solving such an optimization problem is 
to use an adequate QoS model that univocally maps subjective aspects (such as the 
perceived quality that may depend on the user) to objective values (such as the utility, 
that is a real number). In this chapter we will recall the most important QoS models 
and their applications. 

7.1 THE QOS-BASED RESOURCE ALLOCATION 
MODEL 

The QoS-based Resource Allocation Model (Q-RAM) [RJM097] is a general frame- 
work that allows the user to describe multiple QoS dimensions, map them to a utility 
value, and solve the resource assignment problem with respect to multiple resources. 

The first important aspect of this model is that each application is not characterized 
by a single constraint, but may need to satisfy multiple requirements. This is an 
important difference with respect to the traditional real-time model, in which each 
task is characterized by a single deadline or priority. An audio streaming program is 



a typical example of application that can take advantage of the rich QoS description 
provided by Q-RAM: the audio data must be decoded and put in the audio card buffer 
before the buffer is empty (and this is a tirriirg constraint), but can also be provided at 
different rnrriplirg ln fes  and erlcodirgs (affecting the final quality of the reproduced 
audio). Moreover, different conzpl-ersion mechanisms can be used to reduce the needed 
network bandwidth, and they may introduce some loss in the quality of the decoded 
audio. Finally, there may be some additional lafenc? constraints, or data may require 
to be encr?yfecl. 

In summary, some important QoS dimensions may be: timeliness, security, data quality, 
dependability, and so on. Each application may have a minimum QoS requirement 
along each dimension (for example, the audio must not be sampled at less than 8 bits 
per sample). In some cases, a maximum QoS requirement along some dimensions 
can make sense too (for example, it may be useless to sample audio data at more than 
~XOOOKH;). 

Another important characteristic of the Q-RAM model is that it recognizes that each 
application needs different resources for its execution (for example, each application 
will s~lrely need some CPU time and some memory), and decreasing the need for 
one resource may increase the need for a different one. For example, let us consider 
the audio streaming application again: the amount of network bandwidth needed for 
receiving an audio stream can be decreased by compressing the audio data, but this 
will increase the CPU requirements. If a formalized model like Q-RAM is not used, 
finding the correct resource trade-off may be difficult, and empirical methodologies 
are often used to tune the application. 

Formally speaking, Q-RAM models a system as a set of concurrent applications 
{r1. . . . . rn} (each application is considered as composed by a single task) served 
by using a set of resources {R1. . . . . R,,). Since each resource R, is shared (tempo- 
rally or spatially) among different tasks and has a maximum capacity Rya", the goal 
of a resource allocation algorithm is to find an allocation R that is optimal based on 
some optimality criterion. An allocation R is a matrix composed by elements R, , in- 
dicating the amount of resource R, allocated to application r,. The resource allocation 
algorithm must ensure that 'VJ. C:=l R, , < RT"'. 
Note that RTn' depends both on the resource and on the algorithm used to allocate 
the resource. For example, considering the CPU, R?!;: is 1 if EDF is used as a 
scheduling algorithm, and can be 0.69 if RM is used. To be generic enough, Q-RAM 
assumes that each resource is scheduled so that an amount R, , of R, is assigned 
to task 7, ,  but does not make any assumption on the particular scheduling algorithm 
(the scheduling algorithm behavior is modeled through RT" '). Returning to the CPU 
example, any algorithm providing temporal protection (such as a reservation algorithm 
or a proportional share algorithm) can be used. 



In order to define an optimality criterion, each application is assigned a ufi l ih  L7,,  
defined as the value achieved by assigning ( R ,  1, . . . , R, ,,,) to 7,. To be more precise, 
the utility is a function C, ( R )  of the resource assignment; for this reason, C,(R)  is 
referred to as the iitilit? fi~rlcfiorl of 7,. The total system utility is defined as a weighted 
sum of all the applications' utilities: 

where w ,  is the importance of application r, . 

Note that throughout this chapter the C ,  ( )  symbol is used to denote the utility function, 
and not the utilization as in the rest of the book. This notation has been adopted for 
consistency with the original work. 

Since every application is characterized by multiple QoS dimensions Q k, the applica- 
tion utility is decomposed along such different dimensions: in other words, C, ( R )  is 
a function of the dimensional resource iitilit? C, A ( R ) ,  defined as the value achieved 
along the QoS dimension Q A  by application 7, under the resource assignment R. The 
QoS requirements of each application combined with the dimensional resource utility 
functions result in nlinirnal res ' so i~~e  req~rirenlerzt~ Rin;"' on each QoS dimension Q k .  
An application 7, is feasible if it satisfies its minimal requirements on every QoS di- 
mension. The minimum amount of resource R,  needed by application 7, is given by 
Rinn = Ck R y n A .  

The previous definitions provide the foundation for a QoS optimization problem that 
can be successfidly solved under the following assumptions: 

I .  Applications are independent. 

2. The system has enough resources to satisfy the minimal resource requirements of 
each application. In other words, V j .  xy=l?R:'" ,'" RR"""" 

3 .  

3. The utility functions L, () (and the dimensional utility functions L7, ,()) are non- 
decreasing in all the arguments R,  , . 

Note that the first assumption is only used to simplify the analysis, but it is not strictly 
needed. Also, note that the application importance zc , can be eliminated from the model 
by considering the weighted utility function ut,C, ( )  instead of Cz ().  At this point, it is 
clear that the goal of Q-RAM is to find a matrix R such that: 

I .  The schedulability constraint is satisfied: V j .  CLl R2 < R y a r ;  



2. The minimal resource requirements are satisfied: Vz. j, R ,  , > EL Rr'n\ 

3. The system utility C(R)  is maximized. 

The generic case (multiple resources and multiple QoS dimensions with generic utility 
functions) is not easy to solve, hence the authors propose different solution algorithms 
that are valid under some simplifying assumptions. The single resource and single QoS 
dimension is analyzed first, under the additional hypothesis that the utility function 
C, ( R )  is twice continuously differentiable and concave. Let R 1 be the single resource 
considered in this case. Because of Assumption 2 (the minimum resource constraints 
can be satisfied), it is possible to focus only on the allocation of the "excess resource" 
R: = Rz 1 - R:in1 (the J and k indexes have been removed from R' because there 
is only one resource and one QoS dimension). By definition, R'""" = R y  - 
Erz R~l~~l,andRl17ZZrZ 

z=l I - 0. Standard results from operational research (the Kuhn 
Tucker theorem) ensure that a resource allocation R ' is optimal only if Vz. R/, = 0, or 
for any ( I .  h )  : Ri > 0 and RA > 0, the first derivative of C, () computed in Ri is equal 
to the first derivative of Cj ( )  computed in R:. Note that this condition is necessary, 
but not sufficient. Based on this result, it is possible to find an optimal allocation R1,  
by using an iterative algorithm. At each step, the following quantities are computed: 

w Ri = R, 1 - R:?"' is the excess resource currently allocated to 7,; 

w C:() is the first derivative of the utility function; 

Based on such definitions, the algorithm works as follows: 

1. The algorithm starts by assigning the minimum resource requirement R ?""to 
each task 7,; since the excess resource Ri is considered, the algorithm starts with 
R; = 0. 

2. Each step begins by computing C:(Ri) and F'. 

3. If max,{C;(R:)} = 0, then the algorithm stops because the current assignment 
is optimal. 

4. If L%, = 0, then the excess resource R: allocated to each task 7, E T' is increased 
so that the corresponding L7:(Ri) are decreased (in a way to keep them equal to 
each other) until either they become equal to CA, or the entire resource R1 is 
allocated (i.e., R: = R'"'"'). In this second case, the algorithm stops. 



5 .  If the algorithm does not stop at step 4, then r ' is increased (because now C,/, = 

lnax,{L'~(R~)}), and the algorithm returns to step 2. 

If an application is characterized by multiple QoS dimensions, the problem is more 
complex because the optimal allocation depends on the relationship among such QoS 
dimensions. In general, QoS dimensions can be dependent or independent. 

Two QoS dimensions are independent if a quality variation in one of them does not 
change the amount of resource needed to keep the quality level on the other dimension 
stable. In this case, dimension utilities are additive. Conversely, two QoS dimensions 
are dependent if a quality variation in one of them can cause a quality change on the 
other one, assuming the amount of resources is not increased. 

If all the QoS dimensions are independent, then C ,  (R)  = xk L, k (R) ,  and the opti- 
mization problem can be treated as a single-QoS-dimension problem, by introducing 
some fake applications r f  that describe the various QoS dimensions. Hence, the re- 
source allocation problem is transformed into an equivalent problem, where the new 
task set is composed by n * d tasks (remember that 71 is the number of applications 
and d is the number of QoS dimensions). Tasks from rl to rd will describe the d QoS 
dimensions of the first application (and will be characterized by the utility functions 
C1 1 (R) .  . . . . C1 ,{(R)), tasks from rd+l to T Z ~  will describe the QoS dimensions of the 
second application, and so on. This new problem is a single-QoS-dimension problem, 
and can be solved using the algorithm presented above. 

If QoS dimensions are dependent, solving the problem is more complex. In this case, 
the total system utility is a multi-dimensional function of the dimensional utilities. If 
the dimension utility functions L7,.k (R)  are continuous, imposing R ,  = k (remember 
that there is only a single resource in the system) defines a surface in the QoS space 
that can be projected on the function that maps dimensional utilities to the system 
utility. By getting the maximum utility for each R ,  = k surface, the problem is 
again transformed into a single-QoS-dimension problem, and it is possible to apply the 
algorithm presented above. 

The case in which the dimensional utility functions are not continuous (i.e., QoS di- 
mensions are discrete) cannot be treated in this way, and is even more complex. In 
fact, the authors propose only a nearly-optimal algorithm, and f~lrther investigate the 
problem in a different paper [LRLS98]. In such a paper, the authors prove that solving 
the optimization problem in the case of dependent and discrete QoS dimensions is 
NP-hard, and propose an approximation based on a polynomial-time algorithm that 
provides a solution at a bounded distance from the optimal resource allocation. 

If more than one resource is considered (multiple resource problem), the complexity of 
the optimization problem increases, because some new degrees of freedom are added. 



To make resource allocation more tractable with conventional mathematical tools, the 
authors add some additional constraints: first of all, the system can work according to JI 
different schemes, and for each scheme the utility function mapping the requirements 
of resource R, to the utility does not depend on the other resources. Hence, once a 
scheme and a utility level C are chosen, the requirements for all the resources can 
be univocally determined. Moreover, all the utility functions are chosen to be linear 
(with a saturation). In this way, the resource allocation problem can be formulated 
as a linearized rniuer integer progrmzn~ing problem that can be solved by using some 
numerical method. 

A taxonomy of the different algorithms that can be used for allocating system resources 
when Q-RAM is adopted, together with a comparison of such algorithms based on 
accuracy and computational cost, can be found in [CLS99]. 

As a final remark, note that utility functions are generally the results of a subjective 
evaluation of the output quality, and may depend on the user (what a final user evaluates 
as a "good quality" can be unsatisfactory for a different user). Hence, assigning utility 
functions is not easy. In some cases, however, utility values can be deterministically 
associated to a resourceconfiguration. For example, in control applications it is easy to 
define a control metric that describes the quality of the control action. It can be based 
on the period of the control tasks or on other quantities dependent on the amount of 
resources allocated to the control tasks. This will be better explained in Section 7.3. 

7.2 STATIC VS. DYNAMIC RESOURCE 
MANAGEMENT 

As explained in the previous section, the problem of designing a system fulfilling some 
specified QoS requirements can be often mapped to a resource management problem. 
Abstract QoS models, like Q-RAM, permit to map high-level specifications into low- 
level requirements, so that it is possible to assign the proper amount of resources to each 
task. Such a resource management can be performed either statically or dynamically. 

Static resource management is performed at a system design phase, and can be for- 
mulated as an off-line optimization problem. During system design, if requirements 
and resource consumptions of each task are known in advance, then it is possible to 
formulate the optimization problem and solve it to find the optimal resource assignment 
and scheduling parameters. In this case, the complexity of the optimization algorithm 
and the time needed to find an optimal solution are not much critical, and the accuracy 
of the solution is the most important factor. 



Static (a-priori) resource assignment has been traditionally used in designing critical 
real-time systems, and it is still a good choice for those systems in which an objective 
QoS metrics exists, and the relation between resource usage and QoS level is clear and 
known. Control systems are a good example: in a feedback controller, the quality of the 
control action can be clearly expressed by an objective metric, based on the difference 
between the response of the closed loop system and the desired response. 

If a controller is designed to obtain a closed loop response y ( t )  to an input n ( t ) ,  and the 
actual response of the closed loop system to 7 1 ( t )  is y l ( t ) ,  then a control performance 
index can be defined as a quantity that is somehow proportional to the integral of 
y ( t )  - y l ( t ) ,  ( y ( t )  - y ' ( t ) ) L ,  or something similar. 

Moreover, a real-time controller is typically a static system, in which the resource 
requirements of control tasks can be known a priori. Hence, during the design phase, 
it is possible to exactly know the amount of CPU (or other system resources) needed to 
run the control tasks at a specified frequency. The designing techniques traditionally 
presented in the real-time literature tend to consider only schedulability issues, without 
considering the effect of the design choices on the control performance. Using a QoS 
model helps to complement such traditional techniques with a systematic evaluation of 
the impact of (for example) a frequency assignment on the quality of the final control 
action. As previously said, an example of usage of the QoS specifications in designing 
a control system will be presented in Section 7.3. 

Dynamic resource management can be performed at run time to better cope with system 
unpredictability, or with the inherent dynamic nature of many real-time applications. 
In this case, the resource optimization problem is solved on line by an active entity, 
typically a QoS Mmager .  The QoS manager is a task responsible for dynamically 
assigning system resources, and tuning them so that the global utility is maximized. 

The QoS manager partitions system resources by using a rizecharlisriz and a polic\ : the 
mechanism is used for assigning a specified amount of resources to each task, and 
can be based on modifying the scheduling parameters, or on changing the application 
behavior. The first approach does not require any modification in the applications, 
but implies a strict cooperation between the QoS manager and the scheduler. Hence, 
the QoS manager results to be tightly dependent on the kernel, and on the adopted 
scheduling algorithm. The second approach allows making the QoS manager and the 
applications independent of the kernel and of the scheduling algorithm, but requires 
to heavily modify the applications to support dynamic QoS adaptation. Every "QoS- 
Aware" application must support different service levels, and must be able to switch 
between them upon manager requests. Application-level QoS adaptation, as described 
for example is Section 8.3, is an example of this approach. 



The policy is used by the QoS manager for deciding how to partition system resources 
among tasks. Such an assignment can be performed by the QoS manager by solving 
an on-line optimization problem (similar to the one proposed by Q-RAM) , or by using 
some kind of heuristics. In this case, the complexity of the optimization algorithm (and 
the amount of time needed to solve it) becomes relevant. 

The QoS manager can perform its dynamic resource assignment decisions based on 
resource requirements explicitly declared by the applications, or it can use some form 
of feedback from the system. In the first case, applications have to explicitly declare 
their requirements and resource consumptions (e.g., by using something similar to the 
Q-RAM utility functions). Using this approach, the QoS manager decisions can be 
performed every time an application enters the system, leaves the system, explicitly 
requires to change its service level, or changes its requirements or declared resource 
consumptions. An example of this approach is given by the Elastic Tcisk Model, pre- 
sented in Section 2.7.1. When using some form of feedback, the QoS manager peri- 
odically monitors system performance and application resource usage to dynamically 
construct the utility functions. This approach results in a form of feedback scheduling, 
which is treated in Chapter 8. 

Finally, it is worth observing that an abstract QoS model, such as Q-RAM, is funda- 
mental for implementing any form of QoS management or any kind of QoS manager. 
In particular, the Q-RAM model is generic enough to be used in both dynamic and 
static resource allocation, and the authors put a lot of effort in developing optimization 
algorithms that are efficient enough to be used on line. 

7.3 INTEGRATING DESIGN & SCHEDULING ISSUES 

In digital control, the system performance is a function of the sampling rate: for a 
given controller design method, faster sampling permits, up to a limit, a better control 
performance. However, there is a lower bound on the frequency for each task (f :nzn, 

that is, the minimum frequency for each task T , ) ,  below which the performance is unac- 
ceptable because the system becomes unstable. In this formulation, l/ f i'"n represents 
the hard relative deadline that each instance of r, has to honor. 

According to the considerations expressed above, the design of a digital controller 
should not be performed separately from the system schedulability analysis; in fact, 
optimal control performance and temporal predictability can only be achieved by ad- 
dressing control design and scheduling issues together. 



The problemof selecting a set of control task frequencies to optimize the system control 
performance subject to schedulability constraints was addressed by Seto, Lehoczky, 
Sha and Shin [SLSS97]. 

7.3.1 PERFORMANCE LOSS INDEX 

According to the frequency optimization algorithm described in [SLSS97], each con- 
trol task r, is characterized by a Pel-fol-nznrlce Losr hider (PLI1), which measures the 
difference between a digital and a continuous control as a function of the sampling 
frequency. In particular, if J ,  and . J d ( f )  are the performance indices generated by a 
continuous-time control and its digital implementation at a sampling frequency f ,  the 
PLI is defined as A J (  f )  = . I d (  f )  - J c ,  which is convex and monotonically decreas- 
ing with the frequency. In [SLSS97], for each control task T , ,  A . J z ( f z )  is approximated 
by the following exponential function: 

where f ,  is the frequency of 7 ,  , c, , is a magnitude coefficient, and 3, is the decay rate. 
A typical PLI is illustrated in Fig~lre 7.1. where f  ,,, is the lower bound on the sampling 
frequency. 

The performance loss index of the overall system A J (  f  l ,  . .. . f n )  is defined as follows: 

where zc, is a design parameter determined from the application. For instance, it can 
be the relative importance of the task in the control system with respect to the others. 

Given the available bandwidth (A), the minimum permitted frequency ( f  i'"'"), the 
worst-case execution time (TT7CET,) and the weighedPLI ( u ~ , A . J ,  ( f , ) )  of each task r, 
as input parameters, Seto, Lehoczky, Sha and Shin provided an optimization algorithm 
to compute the frequencies f  PPt which minimize the PLI of the system while guaran- 
teeing the schedulability constraints (i.e., ensuring each task will meet its deadlines). 
Notice that each task frequency f  zo"t computed by this technique is always greater than 
or equal to the corresponding minimum frequency f  :'"'". After defining the notion of 
PLI, the next section describes the control performance optimization algorithm used to 
assign the task frequencies when using digital control. 

'In the original formulation, the perforlnance loss index was simply called performance index or PI. In 
the following. it will be callecl PLT for more clarity. 



fm Sampling Frequency 

Figure 7.1 Control system Perforlnance Loss Index as a function of the sampling fre- 
quency. 

7.3.2 OPTIMIZING CONTROL PERFORMANCE 

In the previous section, the Performance Loss Index (PLI) for a digital control system 
has been formally defined. Such a system PLI represents the objective function to 
be minimized by the control performance optimization algorithm when computing the 
optimal control frequencies. In fact, the corltrol oytirrii;atio~iproblenz can be formulated 
as: 

mi11 P L I  = C w z P L I l ( f l )  = C wZoze-'~f 
( f l  fn)  z=l z=l 

subject to: 



where n is the total number of tasks in the system. Having defined the control optimiza- 
tion problem, the following theorem introduces the control performance optimization 
algorithm for computing its unique optimal solution. 

Theorem 7.1 G h w  flze objecthv ~firncfion and the conatrainta of flze "control oyfi- 
nzi:ation yroblenz ", there existr a unique oytirnal rolz~tiorl giver1 by: 

ithere fz  are ordered as f F z n ,  and according to the follo\virlg irleqz~alitier 

p E [O.  .... n] is the srriallest irlteger such flint 

In practice, the first step for identifying the optimal value of each f ,  is to evaluate the 
parameter p;  that is, the smallest integer p such that equation (7.8) is verified. After 
that, the second step is straightforward and is just consists in evaluating equation (7.6) 
for each task. 



AN EXAMPLE 

The following example will clarify how the control performance optimization algorithm 
works. The technique is applied to a bubble control system, which is a simplified model 
designed to study diving control in submarines [SLSS97]. The bubble control system 
considered here consists of a tank filled with air and immersed in the water. Depth 
control of the diver is achieved by adjusting the piston connected to the air bubble. In 
this example, a camera monitors the diver as sensor for getting its position. 

Suppose that two such systems with different physical dimensions are installed on an 
underwater vehicle to control the depth and orientation of the vehicle, and assume 
they are controlled by one on-board processor. The task set parameters are shown in 
Table 7.1, where, for each bubble control system 2 ,  TT7CET, (ms) is the control task 
worst-case execution time in each sampling period, f  :nzn (Hz) is the lower bound on 
sampling frequency, and L C ,  is the weight assigned to system 1 .  

The following data are given for the control design and scheduling problem: A J ,  = 

n , e - 3 ~ f ~ ,  1 = 1.2 ,  where the frequencies f ,  must be determined. 

Table 7.1 Task parameters for the hubble control system. 

A simple computation shows that the total CPU utilization of the overall bubble system 
is 75% when the minimum task frequencies are assigned. Supposing the total CPU 
utilization available for the bubble systems is loo%, the control performance optimiza- 
tion algorithm allows assigning the optimal task frequencies to fully utilize the CPU. 
In particular, to compute the frequencies f PPt ,  the correct value of the parameter p 
(p = 0) must determined first; then, the optimal frequencies are computed by means 
of equation (7.6). In conclusion, it follows that f  ,""' = 12. IGH;, and f yP t  = 27.81 
achieving a resulting Performance Loss Index P L I  = 0.0772. 

7.4 SMOOTH RATE ADAPTATION 

In real-time applications that involve human-computer interactions, the quality of a 
delivered service depends not only on the absolute level of performance, but also 
on the way performance is changed during workload variations. For example, while 



watching a movie, a continuous transition between color and blacklwhite mode is 
considered much more annoying than watching the entire movie in black and white. 
In general, when human factors are involved in measuring the quality of a computing 
system, smooth QoS transitions are always preferred with respect to abrupt variations. 

When considering periodic activities, the QoS can often be adapted by changing the 
activation rate of the application, and smooth QoS adaptation can be implemented by 
enforcing a gradual transition of the period. Typically, a rate change may be caused 
either by the task itself, as a response to a variation occurred in the environment, or 
by the system, as a way to cope with an overload condition. For example, whenever 
a new task cannot be guaranteed by the system to meet its timing constraints, instead 
of rejecting the task, the system can try to reduce the utilizations of the other tasks 
(by increasing their periods in a controlled fashion) to decrease the total load and 
accommodate the new request. 

The problem of rate adaptation during overload conditions has been widely considered 
in the real-time literature and has been treated in Section 2.7. In this section, we describe 
a method for achieving smooth rate transitions in periodic tasks that are required to 
adapt to abrupt environmental or system changes. This method was originally proposed 
by Buttazzo and Abeni [BA02b] as an extension of the elastic task model (see Section 
2.7.1). According to the elastic model, tasks utilizations are treated as springs with 
given elastic coefficients. To achieve smooth rate transitions, the model is extended by 
coupling each spring with a damping device which prevents abrupt period changes. 

Hence, each task is characterized by five parameters: a worst-case computation time 
C, , a minimum period TI ,  (considered as a nominal period), a maximum period T,,,,,, , , 
an elastic coefficient E l ,  and a damping coefficient B , .  The elastic coefficient specifies 
the flexibility of the task to vary its utilization for adapting the system to a new feasible 
rate configuration: the greater E,, the more elastic the task. The coefficient B, specifies 
the damping with which task r, performs a period transition: the greater B ,, the higher 
the damping effect, and hence the smoother the transition. Thus, an elastic task is 
denoted as: 

.z(G. Tz,,. T,,,,,,, . Ez. Bz). 

From a design perspective, elastic coefficients can be set equal to values which are 
inversely proportional to tasks' importance, whereas damping coefficients can be set 
equal to values which are directly proportional to the level of quality specified by the 
user during transient phases. 

In the following, T, will denote the actual period of task 7 , .  which is constrained to be 
in the range [T,,, . T, ,,?,, ,I. Any period variation is always subject to an elarfic guarantee 
and is accepted only if there exists a feasible schedule in which all the other periods are 
within their range. In this framework, tasks are scheduled by EDF, hence, if C < 1, 

TJ 0 



Figure 7.2 A clamped elastic element. 

Figure 7.3 A generic mechanical impedance 

all tasks can be created at the minimum period T,,, , otherwise the elastic algorithm is 
used to adapt the tasks' periods to T, such that C 5 = Cd < 1, where L;i is some 
desired utilization factor. 

7.4.1 IMPEDANCE CONTROL 

When dealing with damped springs, each elastic element can be modeled as shown in 
Figure 7.2. 

For the sake of completeness, a damped spring is a special case of a system which 
behaves as a mechanical impedance, with stiffness k ,  damping b, and mass n?, as 
shown in Figure 7.3. 

Such a system responds to an external force F as a second-order system according to 
the following equation: 

F = rnY + bk + kx. 
For linear, time-invariant continuous systems, the impedance Z is defined as the ratio of 
the Laplace transform of the effort (F) and the Laplace transform of the flow (o  = i), 
hence 



Figure 7.4 An electrical impedance 

From a system point of view, the inputloutput behavior of a linear system like this 
is described by the ratio of two variables: the effort and the flow. For a mechanical 
system, effort is represented by force and torque, and flow is represented by linear and 
angular velocity. Motors and batteries are equivalent from a system point of view, both 
being effort sources. Similarly, a current generator or a rotating shaft are both flow 
SOLU-ces. 

Using an electrical comparison, a mass (inertial element) is equivalent to an inductive 
element, a damper (dissipative element) is equivalent to a resistor, whereas a spring 
(conservative element) is equivalent to a capacitor. In this comparison, a force corre- 
sponds to a voltage generator, whereas the speed corresponds to a current. Hence, the 
electrical circuit illustrated in Figure 7.4 is equivalent to the mechanical impedance 
shown in Figure 7.3, and its electrical impedance Z(s) is expressed as 

Thus, a damped spring is equivalent to an RC circuit, for which we can write: 

The position of the damping device can be computed as 

and the transfer function of the system can be rewritten as 



where a = & is the system's pole for the RC circuit, and a = in the case of a 
damped spring. Using the Z-transform, the transfer function can be expressed in a 
discrete time domain, as follows: 

where T is the sampling period and p  = epUT 

From G ( z ) ,  the discrete time equation expressing the position ~ ( t )  of the damped 
spring as a function of the force F ( t )  becomes: 

( t )  = ( 1  - p ) F ( t  - 1 )  + p ~ ( t  - 1 ) .  (7.1 1) 

It is worth observing that any transient law can be used to perform a transition from a 
period to another. The one expressed by equation (7.1 1) is just the one which describes 
the change occurring in a damped spring, which is exponential. In the experiments 
described below, a linear period transition will be also evaluated. 

7.4.2 IMPLEMENTATION ISSUES 

The elastic guarantee mechanism can be implemented as an aperiodic task, acting as 
an Elastic Manager (EM), activated by the other tasks when they are created or 
when they want to change their period. Whenever activated, the EM calculates the new 
periods and changes them atomically. The overhead caused by the elastic mechanism 
can easily be taken into account, since the EM is handled using a CBS server with a 
bounded utilization (e.g., CEdi = 0.05). 

The graceful rate adaptation mechanism can been implemented on top of the EM, as a 
periodic task, the Damping Manager (DM). The purpose of the DM is to perform the 



rate transition according to the transition law set by the user. To bound the transition 
time, the DM runs with a period Tnlr and performs a full transition in A17steps, requiring 
an interval of STDAli time units. 

The DM task can be in two states: active or idle; when the system is started, the DM 
is idle, and it becomes active when some other task wants to change its period. When 
the DM task becomes active at time t o ,  instead of changing the periods immediately, 
it gracefully changes them during a transient of size T  = S T D  11. 

After activations, the periods arrive to their final values and the period adapter returns 
to its idle state, waiting for the next request. More specifically, the graceful adaptation 
mechanism works as follows: 

w When a task T, wants to change its period from T,  to T?'lr, it posts a request to 
the Damping Manager. 

w When the DM is idle and receives a new request, it becomes active and computes 
the next period value T,(k)  according to the transition law set by the user. We 
note that TI (0)  = T I ,  and after S steps T , ( S )  = T:'". 

At each period TDlr, the Damping Manager updates the period T ,  to the next 
value T, ( k )  and invokes the Elastic Manager to achieve a feasible config~lration. 

w After &I7 activations, the periods are adjusted to their final values, and the period 
adapter returns to its idle state. 

There are some details to be considered in the implementation of the Damping Manager. 

1. Transient period values can be generated by the DM using a generic transition 
law T, ( k )  = f ( k .  T, ( k  - 1). Tp" ). In this chapter, we consider a linear function 

T r J e L L  -T (0) 
T, ( k )  = T,  ( k  - 1 )  + and an exponential function derived from a 
typical RC circuit (see equation (7.1 1)): T, (k )  = ( 1  - P)T:'" + P T , ( ~  - l ) ,  
where p = e q - a T n  I [ ) ,  and cx = '. E, B 

2. The periods converge to their final values in a transient time T = S T n l r  that can 
be specified by the user. If T = 0  (&I7 = 0) ,  the period change is immediate and 
the system is equivalent to the classical spring system. Hence, the original elastic 
model is a special case of the generalized model presented here. 

3. If a task requests a period change while the adapter is still active, the request is 
enqueued and will be served only when all the periods will be stabilized. This is 
done to simplify the adapter, but other strategies can be adopted in this case. 



Table 7.2 Task set parameters used for the first experiment. Times are expressed in mil- 
liseconds. 

7.4.3 EXPERIMENTAL RESULTS 

Three sets of experiments are presented here to show the effectiveness of the approach. 
The first experiment shows the behavior of the elastic compression mechanism (without 
the damping devices) using the task set shown in Table 7.2. At time t = 0, the first 
three tasks start executing at their nominal period, whereas the fourth task starts at time 
t l  = losee, so creating a dynamic workload variation. 

In order to avoid deadline misses during transitions, periods are changed at the next 
release time of the task whose period is decreased. If more tasks ask to decrease their 
period, the EM will change them, if possible, at their next release time. See [BLCA02] 
for a theoretical validation of the compression algorithm. 

When 7-4 is started, the task set is not schedulable with the current periods, thus the 
EM tries to accommodate the request of 7 4  by increasing the periods of the other tasks 
according to the elastic model. The actual execution rates of the tasks are shown in 
Figure 7.5. Notice that, although the first three tasks have the same elastic coefficients 
and the same initial utilization, their periods are changed by a different amount, because 
7-3 reaches its maximum period. 

To verify the behavior of the Damping Manager, another experiment has been per- 
formed using 4 tasks with the parameters shown in Table 7.3. Considering the utiliza- 
tion reserved for the EM, the DM and other device handlers in the system, the effective 
total utilization L7,,, available for the task set is 0.782. Since 23/100 + 231100 + 
231100 + 231100 > 0.782, the periods are initially expanded by the elastic law, and 
the tasks start with current periods different from their nominal periods: T 1  = 107, 
T2 = 107, T3 = 122, and T4 = 143. At time t = 5, 7-1 issues a request to change 
its period to TFE" = 50, and the DM starts to gracefully adapts the periods. At time 
t = 15, rl issues a request to change its period to 250, and all the other periods can 
gracefully go to their nominal values. In this experiment, the transient periods T I  ( k )  
for 71 were generated using a linear law. The result of this experiment is illustrated 
in Figure 7.6,  which shows the number of executed jobs as a function of time. Figure 
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Figure 7.5 Dynamic task activation. 

Table 7.3 Task set parameters used for the second experiment. Times are expressed in 
milliseconds. 

7.7 shows how task periods evolve d~lring the transition. It is worth observing that, 
although Tl is modified using a linear transition law, the other periods vary according to 
a non-linear function. This happens because, when T 1  is decreased, the total processor 
utilization increases, so the Elastic Manager performs a compression of the other tasks 
(enlarging their periods) to keep the total load constant. Given the non linear relation 
between total utilization and periods (C = C1/Tl + . . . + C,,/T,), the other periods 
change in a non-linear fashion. Finally, Figure 7.8 shows the period evolution when 
an exponential law is used for rl to modify its period. 

A different experiment has been performed using the task set shown in Table 7.4 to 
test the behavior of the DM in the presence of dynamic task activations. In this case, 
when a new task ~h needs to enter the system with period T; and there exists a feasible 
elastic schedule for it, it cannot be immediately activated with that period. In fact, the 
other tasks have to gradually reduce their utilizations (according to the damping law) 



T~me (usec) 

Figure 7.6 Number of processecl jobs as a function of time when 71 changes its periocl 
\+ith a linear law. 

Tasks' Perods 

task 4 

400 

Figure 7.7 Petiods ebolution as a function of time mhen changes its periocl mith a linear 
lam 

to decrease the load and create space for the new task. As a consequence, the new task 
is activated with a large period (theoretically infinite, practically equal to MAXINT), 
which is gradually reduced to the final Ti; value by applying the damping law. We 
note that the time required to the transition is always bounded to S T D  11,  where S 
is the number of steps fixed for the transition and TDsI is the period of the Damping 
Manager. 
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Table 7.4 Task set parameters 11sed for the third experiment. Times are expressed in 
milliseconds. 

In the experiment, task 7 2  was added at time t = 5sec, and the DM started to decrease 
its period towards the final value TL,, = 100ms. Figures 7.9 and 7.10 show the results 
of this experiment when a linear transition law was used. It is worth noticing that, as 
a consequence of 7 2  arrival, all the task periods begin to gracefully expand to create 
space for 7 2 ,  thus 7 2  actually begins to execute only when T2(k) < TTar. From 
Figure 7.10 it is also interesting to observe that, as T2 is decreased linearly, the other 
periods increase exponentially, based on their elastic coefficients, for the same reason 
explained in the previous experiment. 

Figure 7.11 shows the result achieved on the same task set using an exponential transient 
law. In this case, the activation delay experienced by 7 2  is smaller with respect to the 
linear case. Moreover, the other periods reach their final values with a much smoother 
transition. 
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Figure 7.9 Number of processed jobs as a function of time when task Q is clynamically 
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and its period is changed using a linear transition law. 

From the experiments presented above, it can be seen that, when an active task wants 
to change its period (either lower or higher than the current one), a linear transition law 
is able to achieve smoother period variations on the other tasks. On the other hand, 
when a new task needs to be activated in the system, an exponential law (for reducing 
its period to the required final value) is able to vary the other periods more gracefully 
and it also allows to reduce the activation delay of the newly arrived task. 
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FEEDBACK SCHEDULING 

Traditional hard real-time applications are designed to respect all deadlines of every 
task in worst-case scenarios. Although such an approach is very effective when the 
characteristics of the system are known in advance, it presents some problems for 
highly dynamic systems, where the characteristics of the environment can vary during 
system's lifetime, and the total utilization is subject to online (and often unpredictable) 
fluctuations. In these cases, the classical hard real-time approach suffers from the 
following problems: 

w an exact a-priori knowledge of the tasks' parameters (minimum interarrival times 
and worst-case execution times) is very difficult to achieve inmodern architectures; 

the resulting system is nofjkxible,  because it cannot tolerate variations in tasks' 
parameters or errors in parameters' estimation; 

w system's resources are underutilized most of the time, since hard guarantee is 
performed under pessimistic assumptions and worst-case scenarios (often very 
rare). 

An interesting way to address system's unpredictability is to use some kind of feedback 
to dynamically adapt the scheduler behavior so that some selected QoS metric is kept 
under control even in the presence of overload situations. Since the resulting feedback 
loop creates a reactive system, it is not possible to prevent overloads, but it is possible 
to minimize their effects. To apply feedback techniques to real-time scheduling, it is 
necessary: 

1. to select a scheduling algorithm; 

2. to define a QoS index to control (the feedback ~,nriaDle); 

3. to select a scheduling parameter to be adapted (the actiintol-). 



In this chapter, the use of feedback techniques in real-time scheduling is illustrated in 
different situations. We first present an adaptive admission control method for control- 
ling the number of missed deadlines of aperiodic jobs. Then, we show how adaptation 
techniques can be applied to resource reservations (introducing adaptive reservations), 
and we discuss how to adapt the QoS at the application level. We finally conclude the 
chapter by presenting some feedback mechanisms based on explicit workload estima- 
tion. 

8.1 CONTROLLING THE NUMBER OF MISSED 
DEADLINES 

Feedback techniques were originally proposed in time sharing systems [CMDD62], 
and have been also successively applied to real-time systems [Nak98c, RSOl] and 
multimedia systems [SGG+99]. However, the development of a more theoretically 
founded basis for feedback scheduling (or closed-loop scheduling) has been advocated 
only recently. 

One of the first proposed real-time closed-loop scheduler, Feedback Control EDF (FC- 
EDF) [SLS99], was originally developed for working with insufficient resources (i.e., in 
overload conditions), but it can also be used for handling dynamic systems characterized 
by unpredictable workloads. In particular, FC-EDF uses a feedback scheme on the EDF 
scheduling algorithm to tolerate uncertainty in tasks' execution times. The observed 
variable is the dendlirle rizirr lnf io J I ,  defined as the ratio of the number of missed 
deadlines and the total number of deadlines in an observation window. Admission 
control is used as an actuator to affect the system workload. In particular, the control 
action on the system utilization is performedby rejecting tasks or changing their service 
level. 

When a new task r, arrives in the system, it has to pass and admission test that uses 
information from the feedback to decide whether 7, can be accepted or not. Every 
accepted task is characterized by two or more service levels, having different execution 
times and different qualities of the output (see also the imprecise computation model 
[HLW91]). A service level controller uses information from the feedback to set the 
tasks' quality levels so that the system load is increased or decreased when needed. 
The structure of the resulting scheduler is shown in Figure 8.1. 

FC-EDF uses a Proportional Integral Derivative (PID) controller to compute the vari- 
ation Al' to apply at the system load based on the observed deadline miss ratio -21: 
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Figure 8.1 Stlucture of the FC-EDF closed-loop scheduler. 

Figure 8.2 Model of the FC-EDF closed-loop scheduler. 

where C p ,  C I ,  and CD are the controller's parameters, I T T 7  is the integration window, 
and DTT7 is the size of the differentiation interval. 

Such a PID controller is used to increase the utilization when the system is not over- 
loaded for a certain period of time. In this way, it is possible to increase system 
efficiency by accepting a higher number of tasks, or running them at the highest possi- 
ble quality level. As an alternative [LSTS99], the reference value for the deadline miss 
ratio can be set to -\I0 > 0, so that the system utilization is automatically increased 
when J I ( t )  arrives to 0. Using this setting, a simple PID (without any modification) 
can be successf~dly used without underutilizing the system. 

The resulting FC-EDF scheduler can be modeled as shown in Figure 8.2; if the EDF 
scheduler is modeled as a tank (as proposed by Stankovic and others [SLS99, LSTS991). 
it is possible to design the PID controller to properly stabilize the system. This can be 
done by using control theory, that already provides tools (such as the Z transform) to 
analyze the behavior of closed loop systems. 



However, modeling the EDF scheduler as a simple tank system is an oversimplification 
that can lead to system instability [LSA+OO]. Such an instability is visible when the 
input workload is constant: in this case, FC-EDF is able to control the deadline miss 
ratio to 0 in a short time, but after this transient the system continues to experience 
periodic deadline misses (using control terminology, this is a limit c> cle). This happens 
because FC-EDF only monitors the overload (through the deadline miss ratio), and 
cannot monitor underload situations. The result is a control saturation (the deadline 
miss ratio cannot be less than 0): for example, the controller cannot make any distinction 
between a situation with -21 = 0. C = 0.9 and a situation with JI = 0. C = 0.1. To 
avoid system underutilization, FC-EDF always tries to increase the system load when 
-21 = 0, but this causes the limit cycle. 

The instability problem can be solved by monitoring both the deadline miss ratio 
and the system utilization [LSA+OO]: the FC-EDF~ scheduler uses two different PID 
controllers: the first one computes AC based on the deadline miss ratio, whereas the 
second one computes AC based on the utilization. The control signal is then selected 
by choosing the minimum between the outputs of the two controllers. In this way, 
FC-EDF~ is able to achieve a stable deadline miss ratio in all workload conditions. 

8.2 ADAPTIVE RESERVATIONS 

One of the major problems presented by feedback schemes like FC-EDF is that they 
can only control a global QoS metric, such as the total number of missed deadlines, 
but they cannot control the performance of each single task. This issue can be ad- 
dressed through a reservation-based approach (see Chapter 3) .  which allows using an 
independent controller for each reservation in the system (and hence for each task). 

If a CPU reservation is used to schedule a task r,, then the amount of CPU time Qf 
(or the amount of CPU bandwidth Cf) reserved to 7, can be used as an actuator, and 
the number of reservation periods needed to serve each job can be used as an observed 
value. For example, the reservation and feedback approaches can be combined to adjust 
tasks' periods according to the actual CPU load [Nak98c], or the CPU proportion of 
each process can be adapted to control the task's performance. As an alternative, if the 
processes served by reservation-based scheduler are organized in a pipeline then the 
adaptation mechanism can control the length of the queues between pipeline's stages 
[SGG+99]. 

Adaptive Reservations are an interesting abstraction that allows separating task param- 
eters from scheduling parameters [AB99a]. In fact, the traditional task models used in 
the real-time literature are useful to directly map each task to proper scheduling param- 
eters, but have the disadvantage of exporting some low-level details of the scheduling 
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algorithm. Since users are not generally interested in such details and do not often 
know all tasks parameters, in many cases the (C. T )  model is very different from the 
real needs, hence programmers are forced to assign low-level parameters according to 
complex mapping f~mctions. 

These problems can be addressed by introducing high-level task models which provide 
an interface closer to real user's requirements. In particular, such high-level task models 
eliminate the need for an a-priori knowledge of the worst-case execution time. Each 
task 7, can be characterized by a weight z c , ,  representing its in~porfurlce with respect 
to the others, and by some fer~zporul con~fruirl t~,  such as a period or a desired service 
latency. 

If the system is overloaded, and the CPU bandwidth is not sufficient to fulfill each 
task's requirement, a bandwidth compression algorithm has to be introduced to correct 
the fraction of CPU bandwidth assigned to each task using the task weights L C ,  (tasks 
with higher weights will receive a bandwidth nearest to the requested one). 

The advantage of such a model is that it separates task temporal constraints (the period 
TI ,  or the rate R, = l / T z )  from task importance, expressed by the weight ut,.  In fact, 
one of the major problems of classical real-time scheduling algorithms (such as RM or 
EDF) is that the task importance implicitly results to be proportional to the inverse of 
the task period. 

An adaptive reservation mechanism works as follows: a reservation (C,', . P,') is used 
to schedule 7,; when a job r, , finishes, an observed value E ,  , is measured, and a new 
scheduling parameter C ~ , + l  = g(L;", . E , . ,  . . .) is computed. 

In Adaptive Bandwidth reservations [AB99a], the basic scheduling algorithm is the 
CBS (see Section 3.6.1). and the observed value (the ~clzed~rling error) is defined as 
the difference between the latest scheduling deadline assigned by the CBS to a job and 
the job soft deadline: 

' 1  J = d:., - ( r . 2  , + TI). 

Since the underlying priority assignment is based on EDF, if the server is schedulable, 
each instance 7, , is guaranteed to finish within the last assigned server deadline di,. 
Hence, the CBS scheduling error E ,  , represents the difference between the deadline 
d : ,  that 7, , ir guarurlfeed to respect and the deadline d , ,  = ?-, , + T, that it rlzoiild 
respect. A value E ,  , = 0 means that job r,  , met its soft deadline, whereas a value 
E ,  I > 0 means that job r,  , completed after its (soft) deadline, because the reserved 
bandwidth L,' = Q;'/P,' was not enough to properly serve it. Hence, the objective of 
the system is to control the scheduling error to 0: if this value increases, Q i has to be 
increased accordingly, otherwise it can be left unchanged. 



If C ,  Cf ,  > Club (where Club is the utilization least upper bound of the schedul- 
ing algorithm), then the reserved bandwidths must be rescaled using a compression 
mechanism, to maintain the system schedulable. To better understand the compression 
mechanism, some additional definitions are needed: 

Definition 8.1 Given a task ref F = { T I .  . . . T,,} cowlposed of 11 tarks, a bandwidth 
assignment C ir a l,ector C  = (C;. . . . CA) E R" sz~ch f lmf V1 < 11.0 < C,i < GTib, 
and a f  evet? f h e  L7f = Cf,. 

Definition 8.2 A band~vidth a ~ ~ i g n r ~ z e n t  i~  aid fo  be feasible i f  C ,  Cf < Liuh. 

Note that the feasibility of a bandwidth assignment is a global condition, because it 
depends on all the servers in the system, whereas the feedback controller only performs 
a local adaptation, since it operates on individual tasks and does not consider any 
schedulability or feasibility issue.' Hence, the bandwidth compression is a global 
mechanism necessary to preserve the feasibility of a bandwidth assignment, and is 
performed by the cor~zyressiorz~firncfion c' = h ( c ) .  The compression function is a 
function h : R" + Rn that transforms an infeasible bandwidth assignment into a 
feasible one; in practice, if 6' = h( i ' ) ,  then C;' < CLtlb. In particular, the i t "  
component of vector Cp' is computed as 

L;" i f C , L ; " < C l u b  
otherwise 

where h , ( )  is the l t h  component of vector h. A simple solution to perform such a 
bandwidth compression is to scale tasks' utilizations in a proportional way: 

being s, the scaling factor. Since the compression must be done according to the tasks' 
weights, s ,  must be proportional to zc,: s, = zc, JI. For the sake of generality, the sum 
of the reserved bandwidths is set to Cma" < L i u h ,  hence imposing C, L7s' = LTmUT 
we have: 

'Each feedback controller is not aware of all the other reserved tasks in the system. 
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This simple method can be slightly modified to guarantee a minimum bandwidth L7 " I n  

to each task. 

g o  

The closed loop control used to adjust the reserved bandwidth is shown in Figure 8.3. 
When implementing an Adaptive Reservation abstraction, it is important to design the 
feedback function so that the resulting adaptive scheduler is able to assign the correct 
amount of resources to each task (when possible) in a short time and with an acceptable 
accuracy. Since control theory has already been proven to be a valid tool for designing 
feedback schedulers (see FC-EDF [SLS99, LSTS99, LSA+OO]), it is interesting to 
use it for evaluating the performance of an adaptive reservation. Using control theory 
terminology, the closed loop system must be stable, and the response time, overshoot, 
and steady-state error must be compliant with some specifications. 

i J i ll 0 i i fo i 

- 

Since a proper feedback scheme providing the required characteristics can be designed 
only based on an accurate model of the system, a precise model of a reservation sched- 
uler has been developed [APLW02]. Such a model is highly non-linear, and contains 
some quantization effects (given by the presence of a ceiling operator in the model), 
hence it is very difficult to control. However, by applying some approximations it 
is possible to linearize the model, and to design a feedback controller that is able to 
stabilize the closed-loop system. As for FC-EDF~, the resulting controller is based on 
a stvitchirg &nnrnic (two different controllers are designed, and the one to be used 
is dynamically chosen based on the value of the controlled variable c). The classical 
"pole-placement" technique can be used to synthesize the two controllers; in this way it 
is possible to comply with requirements on the closed loop dynamics (i.e., the evolution 
of the scheduler under the action of a feedback controller). 

- System Algorithm 
Bandwidth 
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Figure 8.4 Dynamic system representing a linearized resenation \+it11 a feedback mnech- 
anism. 

To achieve the control goals, a feedback controller G ( Z )  is used as in Figure 8.4: 
L7(Z) = G ( Z ) t ( Z ) .  Since the open loop dynamics is t ( Z )  = F,, ( Z ) C ( Z )  + 
F, (Z)C(Z) ,  the closed loop dynamics is described by the transfer function between 
C ( Z )  and t ( Z ) :  

The simplicity of the system (whose dynamic equations are similar to those of a tank) 
suggested the use of a Proportional Integral (PI) controller (this is a difference with 
respect to FC-EDF~, which needs a PID). A PI controller is described by: 

where C p  and CI are the coefficients of the proportional and integral actions, respec- 
tively. By manipulating the previous equation, a PI can also be described as: 

wherea = C p  and 3 = CI C p .  

According to control theory, the closed-loop system is stable if the poles Z ,  of the 
closed-loop system (i.e. the zeros of the denominator of the closed-loop transfer film- 
tion) have norm strictly lower than 1: Z ,  < 1. Moreover, the decay rate p (i.e., 
the "speed" with which the closed-loop system returns to a stable state) is given by 
the maximum norm of the poles. Observe that the use of the PI controller enables the 
choice of the two closed-loop poles. 



Feedback Sclzeditlirzg 

Quantization 4 Fc h 
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Finally, note that the linearization performed to use the Z transform introduced a 
q~rarltication error due to the approximation of a ceiling. This quantization error can 
be taken into account (as shown in [APLW02]), and its effects can be bounded. A 
model of the system accounting for the quantization error is shown in Figure 8.5. It 
has been proven that the quantization error has no effects on E ,  but only causes an 
overestimation in the reserved bandwidth. If P s  < T, the maximum overestimation is 
such that - - 

C C 
- <c7,:< - 
T -  T- P 5 '  

-€ 
> 

where ? is the actual execution time, T is the task period, and c7 is the estimated 
bandwidth. The previous equation shows that by reducing the server period P ' it is 
possible to increase the accuracy of the feedback (i.e., the accuracy of the bandwidth 
estimation). 

8.3 APPLICATION LEVEL ADAPTATION 

- I 
G 

The feedback scheduling techniques shown in the previous sections help to cope with 
unpredictability in the system workload by adapting the behavior of the scheduler. 
When the system is overloaded, the scheduler can either decrease the load by rejecting 
some tasks (as done by FC-EDF), or can decrease the QoS perceived by some tasks (as 
done by the compression mechanism in Adaptive Reservations). In any case, all the 
decisions about adaptation are taken by the scheduler. However, the scheduler is not 
aware of applications' semantics and cannot select the best strategy for decreasing the 
workload. For example, consider a task whose reserved bandwidth is not sufficient for 
executing it with the required QoS level. Such a situation can be handled in two ways, 
which may also be combined together: 

u 
F u  



1. The reserved bandwidth L7," can be increased to satisfy the task QoS requirements; 

2. The amount of CPU time demanded by the task can be decreased to fit with the 
reserved bandwidth. 

The first strategy is the one used by Adaptive Reservations, where the scheduler, or 
a QoS manager, adapts the reserved bandwidths based on tasks' specifications. The 
second strategy seems to be similar to the one used by FC-EDF, in which a service level 
controller can switch the service level of each task. However, it presents a fundamental 
difference, because each application e.xplicitly scales down its own QoS (and conse- 
quently its resource requests) to remove the overload condition and make the system 
schedulable. Since the centralized scheduler is unaware of such a QoS adaptation, this 
second mechanism is referred to as ~~~~~~~~~~~~~~level adnpfnfiorl. Each application has 
the responsibility to cope with its own overloads and can scale down its QoS in different 
ways, because it is the only entity that knows how to perform such a QoS adaptation, 
without any help from the scheduler. 

Several approaches for performing such an application-level adaptation have been pro- 
posed in the literature and are well known in the multimedia community, ranging from 
enlarging task periods to skipping some task instances. For example, DQM [BNBM98] 
is a feedback-based QoS manager which does not require any support from the operating 
system. DQM is a middleware solution aimed at supporting soft real-time applications 
in a conventional OS (Linux). Application execution levels are changed based on re- 
source usage, by monitoring the benefit directly experienced by the application, and 
based on the system load estimated by the middleware itself. A similar approach is 
adopted by FARA [RSY98], where a resource allocator monitors the resource usage 
and coordinates the adaptation. This solution addresses the problem of integrating 
QoS adaptation with real-time techniques, however it relies on the a-priori knowledge 
about the resources required by each application in each operating mode. The QRAM 
model, presented in Section 7.1, can also be used for performing QoS adaptation at the 
application level. 

In other solutions [Apa98]. each application QoS can be scaled by a global QoS manager 
in order to better respond to the user needs. The adaptation is based on specific r~zode~  
of o y e m f i o ? ~  provided by each application, but it is still performed on a global basis. 

Note that application-level adaptation is mainly useful when the system is perma- 
nently overloaded. For example, if the sum of all CPU utilizations requested by the 
applications is less than the maximum available bandwidth (1 for CBSIEDF), then 
the adaptive reservation mechanism is able to find a feasible bandwidth assignment 



Feedback Sclzeditlirzg 

/ Reouested 
QoS Mapping ~a l i dwid th  

Algorithm 
Scheduling 

Refe~ence R e s e ~  \ ed System 
Feedback Colnpression Bmdnidth  

Function Algorithm 

CBS Scheduling 

Ello] 

Figure 8.6 Hierarchical adaptation achieved by two feedback loops. 

L7 = (L;". . . . Cl) such that each task will receive enough CPU time. In this case, 
application-level adaptation is not needed. On the other hand, if the sum of CPU uti- 
lizations requested by the applications is continuously greater than the available CPU 
bandwidth, then the least important tasks (i.e., the tasks having smaller weights LC ,) can 
suffer from local overloads. Indeed, the goal of the global adaptive reservation mech- 
anism is to isolate task overloads in the least important tasks, independently of their 
requirements and periods2. In this case, an overloaded task can use application-level 
adaptation to scale down its requirements and resolve the overload condition reaching 
n lotver QoS level irl n corlflnlled fashion, otherwise the QoS degradation would be 
unpredictable. 

When application-level adaptation is used together with a global feedback scheduler, 
such as the one implemented in the adaptive reservation approach, there are two or- 
thogorznl forms of adaptation: 

w the scheduler adaptation, realized by an active entity having a global system visi- 
bility, such as a QoS manager or the scheduler itself; 

w the application-level QoS adaptation, performed by each single application. 

Such an integrated approach, referred to as hier-ar-cchical aclc~ptation [ABOla], presents 
the advantages of both methods, allowing applications to scale their QoS level when the 
closed-loop scheduling mechanism cannot serve them properly. Hierarchical adapta- 
tion introduces a new level of feedback, as shown in Figure 8.6. The inner loop imple- 
ments a global feedback scheduling mechanism (in this case, Adaptive Reservations), 
while the outer loop controls the amount of CPU time requested by the application, 
using a local adaptation method. 

 emer ern bet that aclaptixe teserbations separate task importance ftorn timing requitementa 



One of the major problems with this kind of hierarchy is that it can easily reach unstable 
conditions. For example, consider two tasks r l  and 7 2 :  by reacting to a transient 
overload, the global adaptive reservation mechanism could decrease C i ;  if rl reacts 
immediately by decreasing its QoS, when the transient overload is over the bandwidth 
adaptation mechanism could increase C,'. In this way, 7 2  wo~dd increase its QoS level, 
stealing bandwidth from 7 1 ,  thus preventing it to recover its initial QoS level. 

To prevent such a behavior, the application-level adaptation has to act slower than the 
scheduler adaptation, so that QoS is changed only when the overload condition is long 
(in most cases, the QoS is not scaled in response to transient overloads). 

8.4 WORKLOAD ESTIMATORS 

Some of the feedback techniques presented in the previous sections assume the knowl- 
edge of tasks' execution times to derive the computational demand and assign the 
reserved bandwidth to each task. When such values are not known in advance, or are 
highly variable with time, they can be estimated on line by execution time estimators 
explicitly monitoring tasks' execution. To do that, the real-time kernel must provide a 
specific support for monitoring the execution time actually consumed by each job. Tra- 
ditional Unix systems provide the getrusage ()  system call for reading the amount 
of time consumed by a process, but it is not precise enough, since it does resource 
accounting at a tick granularity. 

Once an on-line estimation of task execution times is available, the estimated value c ,  
can be used as an observed value, and some kind of workload adaptation mechanism 
can be used as an actuator. For example, the elastic model presented in Section 2.7.1 
can be combined with the on-line execution time estimation to dynamically adjust the 
tasks' periods [BA02a]. 

When the system workload estimated through such an explicit monitoring is found to 
be greater than a predefined threshold, the adaptation mechanism can be used to find 
a feasible tasks' config~lration. This approach can be combined with CPU reserva- 
tions [FNT95, Nak98cI to enforce the maximum execution time to each task. With this 
technique, the amount of time reserved to each task in each period must still be defined 
based on some off-line estimation, whereas the period is dynamically adapted based on 
the actual execution time. If the reserved budget is too small, the task will experience 
large overruns that will cause the algorithm to increase its period too much. On the 
other hand, if the estimation is too big, the periods are not optimized, the reserved 
budget is never used completely, and the system is underutilized. 
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If resource reservation is not used, the elastic approach (see Section 2.7.1) provides 
a powerful and flexible methodology for adapting tasks' rates to different working 
conditions. However, it strongly relies on the knowledge of the worst-case execution 
times (WCETs). When WCETs are not precisely estimated, the elastic compression 
algorithm will lead to wrong period assignment. In particular, if WCETs are under- 
estimated the compressed tasks may start missing deadlines, whereas, if WCETs are 
overestimated, the algorithm will cause a waste of resources, as well as a performance 
degradation. 

To overcome this problem, on-line estimates of tasks' execution times can be used as 
feedback for achieving workload adaptation. Such estimates are derived by a runtime 
monitoring mechanism embedded in the kernel. When a task starts its execution, it 
is created at its minimum rate, and, at the end of each period, a runtime monitoring 
mechanism updates the mean execution time 6, and the maximum execution time c,. 
Figure 8.7 shows the architecture used to perform rate adaptation. The two values C, 
and c,  derived by the monitoring mechanism are used to compute an execution time 
estimate Q , ,  used by the load estimator to compute the actual workload C,, = 1 $. 
Such a value is then used by the elastic algorithm (periodically invoked with a period 
P) to adapt tasks' rates. Thus, the objective of the global control loop is to maintain 
the estimated actual load C, as close as possible to a desired value LTd. 

T i  
I > 

The advantage of using the elastic compression algorithm is that rate variations can 
be controlled individually for each task by means of elastic coefficients, whose values 
can be set to be inversely proportional to tasks' importance. Using this approach, the 
application is automatically adapted to the actual computational power of the hardware 
platform. The effectiveness of the adaptation depends on whether tasks' utilizations are 
computed based on worst-case ( c ~ )  or average-case (6,) estimates. If the C, estimate 
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is used to compute tasks' utilizations for the elastic algorithm, tasks are assigned larger 
periods and the number of deadline misses quickly reduces to zero. However, this 
solution can cause a waste of resources, since tasks seldom experience their worst case 
simultaneously. 

To increase efficiency, a more optimistic estimation can be used to exploit system 
resources. The resulting approach is a trade off between "rigid" reservation systems, in 
which each task is assigned a fixed amount of resources and cannot demand more (even 
though other tasks require less than the reserved amount), and completely unprotected 
systems, such as those based on bare EDF or RM. In this sense, this approach is 
similar to the "Bandwidth Sharing Server" (BSS) presented in Section 4.2.2, where 
tasks belonging to the same application can share the same resources. In the BSS case, 
however, the fraction of CPU bandwidth that can be exchanged among tasks belonging 
to a particular application cannot be controlled, whereas in the elastic model it depends 
on the elastic coefficients. 

To prevent the number of deadline misses per time unit to increase indefinitely, the 
execution time estimate used to perform the elastic compression must be greater than 
the mean execution time, so a value between 6, and C, is typically acceptable. Hence, 
the elastic compression algorithm is invoked using a value 

where k E [O, I] is referred to as the guatmtee~fkctor. Then, the utilization factor cz 
is computed as 

and the actual load C, is estimated as 

It is worth noting that, if k = 1, the elastic algorithm results to be based on WCET esti- 
mations, so only few deadlines can be missed when the estimated WCET C, is smaller 
than the real one. In general, if no information about execution times is provided, the 
first C, values will be underestimated and it will cause some missed deadline in the 
task startup time. 

A smaller value of k allows increasing the actual system utilization at the cost of an 
increased number of possible deadline misses (remember that a deadline is missed 
when many tasks require a long execution at the same time). A value of k = 0 
allows maximum efficiency, but is the limit under which the system overload becomes 
permanent. 
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The estimation method described above allows using the feedback mechanism either 
when no a-priori information about execution times is provided, or when an approx- 
imated estimation of the mean or maximum execution time is known. In practice, 
the mean execution time estimation is computed iteratively (that is, 6, is periodically 
updated based on the last execution times experienced by the task) starting from an 
initial value cO. If nothing is known about the task parameters, an arbitrary value can 
be assumed for cO; if, on the other hand, an approximate estimation of the execution 
time is known in advance, it can be used as cO, reducing the initial transient during 
which 6, converges to a reasonable estimation and increasing the speed at which the 
periods converge to a stable value. 

As a final observation, it is worth noting that this approach can be successfully applied to 
task sets characterized by variable execution times, allowing periods to vary according 
to execution times variations. If, instead, the proposed mechanism is applied to tasks 
characterized by fixed execution times, it allows adapting task periods to the unknown 
execution times without any deadline miss. In this case, the mean execution time 
is equal to the WCET, but if the starting estimation c0 is different from the actual 
value, the mean execution time estimation needs some time to converge to the correct 
value. In this transient, if the guarantee factor is less than I ,  there could be missed 
deadlines. Hence, in the case of fixed execution times, a guarantee factor k = 1 is 
more appropriate. 

If some additional information about the application is provided, the explicit workload 
estimation can be combined with an "ad hoc" adaptation mechanism, instead of using 
a generic mechanism such as the elastic model. For example, if the real-time tasks 
implement a control algorithm, a feedback scheduling architecture for control tasks 
can be designed to optimize some control performance metric [Cer03, ACr02, CEOO]. 

Such a feedback scheduler attempts to keep the CPU at a high utilization level while 
avoiding overload and distributing the available computing resources among the control 
tasks. It is composed by 3 modules: a ~vor-kload eatinlafor, a r-eao~rrce allocator, and 
a pr-oacti~,e actiorl. The resource allocator assigns periods to tasks so that the total 
estimated utilization is controlled to a set point Cd (typically less than CITib), and a cost 
function (see Section 7.3) is minimized. The proactive action is based on the fact that 
in the proposed model (see [ACr02]) each controller can work in different modes, and 
each mode is characterized by a different profile of execution times. The controller 
switches between different modes depending on the controlled system state, and can 
signal the feedback scheduler in advance when a mode switch is going to happen. 
Such a feedforward information can be used by the feedback scheduler to implement 
the proactive action, reacting in advance with respect to changes in the execution times. 



As an example, the feedback scheduler can be implemented as a periodic task (simi- 
larly to [BA02a]) that periodically reads the monitored mean execution times 6, and 
computes the estimated utilization C = C c,/T, ,  where T,  is the period assigned to 
task T, (i.e., the sampling period of the l t h  controller). Each mode of each control 
task T, is characterized by a ~torizirtal period T,nOln, and the feedback scheduler tries to 
assign periods to the control tasks starting from the nominal periods: in other words, 
if C &IT,'""" < Cd, then all tasks are allowed to execute at their nominal periods. If, 
on the other hand, C &/Tpo"' > Lb, then the feedback scheduler uses its resource 
allocator to assign new periods T,  to tasks so that C = C;i. As said, the optimal periods 
T, can be derived by using control theoretical arguments to minimize a cost function 
J(TZ)  associated with the 2"'" controller. The PLI presented in Section 7.3 can be used 
as a cost function, so that standard techniques can be adopted to optimize the tasks' 
periods [SLSS97]. However, some simulations show that a simple linear rescaling of 
the tasks' periods is able to achieve good results [Cer03]; this is due to the fact that 
under certain assumptions the linear rescaling can be proven to be optimal with respect 
to the overall control performance. 

Finally, the proactive action is used by the feedback scheduler in 3 different ways: 

to execute more frequently, if needed. Usually, the feedback scheduler is activated 
periodically, but if a controller is going to switch its operation mode, then the 
feedback scheduler can be activated immediately to react more rapidly to the 
workload variation caused by the mode switch; 

to keep track of the operating mode of each controller, in order to assign more 
suitable sampling periods; 

to run separate workload estimators for each mode of each task: since each task 7 ,  

is characterized by a different execution time profile for each operation mode n?, 
maintaining different execution time estimations i.7 can actually help improving 
the accuracy of the estimation. 



STOCHASTIC SCHEDULING 

In this chapter we address the problem of performing a probabilistic schedulability 
analysis of real-time task sets, with the aim of providing a relaxed form of guarantee 
for systems with highly variable execution behavior. The objective of the analysis is 
to derive a probability for each task to meet its deadline or, in general, to complete its 
execution within a given interval of time. 

As already explained in the previous chapters, traditional hard real-time guarantee 
(based on worst-case scenarios) is very pessimistic, because tasks' execution times and 
interarrival times typically present a high variability, where the worst-case situation is 
very rare. The consequence of such a pessimistic analysis is that system resources are 
underutilized most of the time, with a significant impact on the overall cost required to 
develop the system. 

Consider, for example, the traditional utilization-based admission test x, Cz < c7lub. 

If the mean execution times are much smaller than the worst-case values C,  = 

max, {c ,  (or the mean interarrival times are much larger than the worst-case ones), 
a guarantee test based on worst-case utilizations C, = C,/T,  would lead to a sig- 
nificant resource waste. On the other hand, performing the admission test using the 
mean utilizations would increase efficiency, but would not provide any guarantee about 
the respected deadlines. This problem can be addressed by adopting a probabilistic 
framework for characterizing a soft real-time system in a more rigorous way. Such a 
probabilistic analysis can be performed using different approaches: 

I .  Classical real-time analysis of fixed or dynamic priority systems can be extended 
to cope with statistically distributed execution times (andlor interarrival times). 

2. Traditional queueing theory (typically used for computing the average response 
times of tasks characterized by random arrival and service times) can be extended 
to cope with priority schedulers (such as RM and EDF). 



3. Novel scheduling algorithms can be developed for simplifying the use of stochastic 
analysis. 

4. The temporal protection property provided by some scheduling algorithms (see 
Chapter 3) can be used to perform a probabilistic guarantee of each task, individ- 
ually and independently of the others. 

Each of these approaches is discussed in detail in the rest of this chapter. 

9.1 BACKGROUND AND DEFINITIONS 

Stochastic analysis and, in particular, probabilistic analysis of real-time scheduling 
algorithms require advanced mathematical tools that sometime are not so easy to un- 
derstand. To make this chapter more readable and understandable, we decided to 
present a simplified description of the various stochastic analysis techniques, at the 
cost of making the description less rigorous. Interested readers are invited to consult 
the original papers (cited in the chapter) to understand the whole mathematics used 
there. 

This section briefly recalls the most important definitions and concepts needed to un- 
derstand the chapter, and introduces some of the most important mathematical tools 
used to deal with probabilities. 

Informally speaking, the final goal of a stochastic guarantee is to compute the proba- 
bility to miss a deadline. To perform a formal analysis of such a probability, we need to 
define the concept of random ~<al-iable and specify the probability of some events (such 
as "job 7, has execution time c,.,") through the yrobabilih cli~tribiffion~firncfion and 
the cirn~illative distrihtion function. 

Definition 9.1 A Random Variable is a variable X deJirlecl in a Jet D, ~vlziclz can 
rmdordy aJsilrne ~ali les s E D ~viflz yrobabilifies P{X = x). 

Definition 9.2 IfX i~ a rand on^ variable, flze Cumulative Distribution Function (CDF) 
ofX is dqfined a5 Cx(s )  = P{X < x). 

Definition 9.3 If X i~ a ra-andon~ variable deJirlecl in D, and CAI (x) i~ i fs  CDE the 
Probability Distribution Function (PDF) FAX (x) of X is a fimctiorl D + R deJi11ec1 
ar Fy(.r)  = C y  (x + 1) - Cy(x ) ,  i f X  ir a dircrete lnrdorri ~<al-iable, or F y ( x )  = 

dCy (x)/dx, i f X  is a corltiniious mrldoriz ~,ariaDle. 
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For discrete random variables (i.e., if D = A[), the PDF FAY ( x )  gives the probability 
that the variable assumes a random value T: FAY (T) = P { X  = T } .  By definition, 
if C is a discrete random variable and C(c)  is its PDF, the corresponding CDF can 
be computed as C;=o C(C). If the random variable is continuous, the sum must be 
replaced with an integral. 

Note that the execution time c,., and the interarrival time r,.,+l - r,  , of a job r, , 
can be considered as two cliscrefe random variables, defined in .Ir, and their PDFs and 
CDFs are discrete functions ,lr + R. 

To simplify the notation, the PDF and CDF of the random variable X ,  will not be 
denoted with F x ( )  and C x ( ) ,  but simply with X ( s ) ,  specifying the meaning in the 
text. 

If X and Y are random variables, then Z = X + Y is also a random variable, and 
its PDF Z ( z )  can be computed based on the PDFs X ( T )  and Y(y) of the two original 
variables. In particular, Z ( z )  is given by the c o n ~ ~ h f i o n  of X ( x )  and Y(y).  The 
convolution of two discrete functions is defined as 

x 

Z ( Z )  = X ( . r )  XI-(( / )  = ' y ~ ( k : ) k ' ( z -  k:). 
I=O 

The definition for continuous functions is similar, using an integral instead of a sum. 
The convolution is frequently used in the probabilistic analysis of scheduling algorithms 
to compute the distribution of the sum of tasks' execution times, or similar quantities. 

If the observed quantities evolve with time, the concept of random variable is not 
sufficient to describe them, and we must introduce the concept of a sfochasfic process. 

Definition 9.4 A stochastic process i~ a rime-cleperzdert rardonl ~ariable. Deperlclirlg 
on the firm clonlinion, i f  can be a discrete time process X , ,  or a continuous time 
process X ( t ) .  In particular; a cliscrefe time process can be Jeen as a sequence qf 
mndorn variabler. 

According to the previous definition, the sequence c , , of job execution times of task 7 ,  

is a stochastic process. However, note that the probability P{c ,~, = c) of having a job 
execution time equal to c does not depend on the job index j, hence the execution times 
of a task can be described by a simple PDF L7(c). A stochastic process having such a 
property is said to be a time invariant process. Another important class of processes is 
represented by Marko~> proceaseJ: 



Definition 9.5 A stoclza~tic process X, i~ a Mar-ko~> process ifthe  d due XI ord?  depend^ 
on X Z 1 ;  flzaf i ~ ,  i f  does rzof depend on XZp2. X ,  3 .  . . . , X1 or 011 finle 2 .  

Since disciete tunctions are simpler to woi k with, time instants are often considered as 
integers, so that a  task^, can be described by a pail of time invaliant stochastic processes 
(C(c ) ,  I r ( t ) ) ,  with L7(c) = P { c ,  , = c)  and I7 ( t )  = P { ?  , ,+I - 1, , = t } .  The only 
case in which execution times and allival times ale consideled to be leal numbers is in 
the real-time queueing theory (RTQT)(see Section 9.3), because tiaditional queueing 
theory is based on continuous time, and its real-time extension did not change this 
assumption. 

Most of the algorithms related to probabilistic analysis are based on a simplified task 
model, in which the interarrival times are constant (i.e., 17( t )  = 1 if t  = T, ,  and 
V ( t )  = 0 otherwise). This is the so called renziperiodic taskrizodel [TDS+95], in which 
a task r, is described by the tuple (C(c ) .  T , ) .  In other words, the semiperiodic task 
model simply extends the traditional Liu & Layland periodic task model by replacing 
the worst-case execution times with stochastically distributed execution times. 

Finally, we need some way for indicating the "average value" of a random variable: 
using a more rigorous formalism, this is called the expectatiorl, or the e~pected  value. 

Definition 9.6 The expectation E[X] of a discr-efe rmdor~z ~ w i a b l e  X de~cribed by a 
PDF X ( x )  is dqfinecl as 

x 

E[X] = C X ( . x . ) x  

The dejnition for contim~oiis lnrdorri ~>al-iables ir sirnilal: iirirg an irltegr-a1 irlstead of 
the J L ~ ~ I Z .  

9.2 STATISTICAL ANALYSIS OF CLASSICAL 
ALGORITHMS 

The hard schedulability analysis of classical real-time scheduling algorithms (based 
on fixed or dynamic priorities) can be performed using the Time Demand Analysis 
(TDA) approach. TDA consists in computing the amount of time demanded by each 
real-time task, expressed by the finle den~andfimctiorl zc , ( t ) ,  and checking whether 
such a time is available. Since computing w,(t) for all time intervals is too onerous, 
the worst-case situation is considered. As it is well known from the real-time theory, 
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Figure 9.1 An example of time demand function for three tasks {q = (100. 300). ~2 = 
(100.100). ~3 = (200.600) scheduled by RM. 

in fixed priority systems, a job 7, k experiences its worst-case response time when it is 
released simultaneously with all the jobs with higher priority. Such a release time is 
called the cl-ificnl instant. If job 7, k is released at the critical instant, ut, ( t )  is defined 
as the maximum amount of time demanded between r , k and t by r, k and by all higher 
priority jobs finishing before f ,  k . 

As shown in Figure 9.1, the time demand function w, ( t )  is a step function, increasing 
by C, every time a higher priority job r ,  1, is released. According to the TDA, if 
3t : 7 , k < t < d l  and zc,  < t - 7 ,  k ,  then r, and all higher priority tasks will not 
miss their deadlines. 

This approach can be extended by considering probabilistic distributions for the execu- 
tion times instead of worst-case values. This is done, for example, in the Probabilistic 
Time Demand Analysis (PTDA) [TDS+95] or in the Stochastic Time Demand Anal- 
ysis (STDA) [GL99]. Both PTDA and STDA are based on the previously introduced 
semipel-iodic task model. The analysis is performed by considering a demanded time 
distribution IT; ( t )  = P{w, ( t )  < t )  instead of the time demand function ut, ( t ) .  

PTDA performs a simple analysis of semiperiodic tasks, assuming D, < T, (hence, 
d, , < r ,  ,+ I ) .  The computation of w, ( t )  (and hence of IT; ( t ) )  is in general not easy, 
but since the analysis is restricted to (semi)periodic tasks, the following bound is valid: 

According to the previous definitions, a lower bound of the probability to respect a 
deadline d,.k can be found: 



where£={d,~.r,~+Tz,~,~+2Tz , . . . ,  r ,k+LD,/T,]  : p,>p,} ,wherep, is the  
priority of task r , .  The PDF TI, ( t )  is computed by using a straightforward extension 
of Equation 9.1: the PDFs C ,  (c) are used instead of the deterministic execution times 
c,  , , and the corn~~lution operation is used instead of the sum. 

The STDA analysis [GL99] extends PTDA to the case of D ,  > TI ,  and fixes some 
inacc~lracies in the analysis (in fact, PTDA is not very accurate when the average 
utilization approaches 1). 

The key point in STDA is the concept of level-j bus! ir l tend: if tasks can miss their 
deadlines (as it happens when a stochastic guarantee is used), analyzing the first job 
after the critical instant is not enough, because the successive jobs can be affected by 
its behavior. A level-j busy interval is an interval of time beginning when a job 7 ,  

or a higher priority job is released and immediately prior to the instant no job in those 
tasks is ready for execution. The interval ends at the first time instant t at which all 
jobs of 7, and higher priority tasks released before t have completed. If a level-j busy 
interval begins at a critical instant (i.e., it begins with the release of a job r ,  and all 
tasks r, : p, > p,) ,  it is called m-ylzaae le~vl-@ , bus! interval. 

According to the previous observation, the analysis cannot be stopped at the first job 
T, k after a critical instant, but must cover the whole in-phase level-@, busy interval 
that follows the critical instant. No job after the end of the interval will be affected by 
the previous history of the system, as already known in real-time theory [Leh90]. Since 
the time demand function and the demanded time distribution are computed on more 
than one job, an additional index must be added, so they will be denoted as ut, A ( t )  and 
11; k ( t ) ,  respectively. 

As the demanded time distribution TI7, , ( t)  must be computed on the whole in-phase 
level-@, busy interval, computing the length of such an interval is crucial for STDA. 
Such a computation can be easily performed by considering that a job 7, k terminates 
when w, A ( t )  = t,  hence IT; , ( t )  is also the probability that job T, A finishes within 
a time t .  In other words, the demanded time distribution coincides with the response 
time distribution. 

For the first job of a level-@, busy interval, IT; k ( t )  can be easily computed as in PTDA, 
since 

rr;.,(t) = p { z ~ ? , . ~ ( t )  5 t ) .  

The response time (demanded time) distribution for the successive jobs in a level-@ , 
busy interval is computed by conditioning the probability to the previous workload: 
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Hence, T I  j k is computed by convolving the execution time distribution of the task with 
the distribution of the backlog obtained by conditioning. This iterative computation 
must be repeated until the end of the busy interval. To take into account the effects 
of higher priority tasks r, : p, > p,, the time interval (r, A .  j, A )  is divided into sub- 
intervals delimited by the releases of higher priority jobs r ,  [ : ?-, E (r, A .  j, A ) ,  and 
the response time probability in each interval is conditioned to the workload in the 
previous one. Finally, the probability of a 7 ,  to complete within its deadline is given 
by 11, k(D1). 

If the1 e is a single task pel pi ioi ity level, the length of a level-@, busy intei val can be 
computed by checking whether r, k finishes betoie the release of r, ~ + 1 ,  i.e., whether 
f ,  < 7, k+l. Therefore, the computation of the lesponse time distlibution T I 7 ,  ~ ( t )  
can be stopped when P{ul, k + l )  < 7 I k + l )  = 1 0 .  

In a probabilistic framework, it is important to observe that the simultaneous release 
of all the tasks does not represent the worst-case situation (as for the deterministic 
analysis). Indeed, this turns out to be true only if the maximum system utilization is 
less than 1. Since the worst-case release configuration is still not clear, various task sets 
with different phases have been simulated [GL99]. Experimental results show that, in 
general, the in-phase case seems to give the worst-case response time CDF (although 
the precise relation among the PDFs it is still not clear). 

The case in which the maximum system workload is greater than one can be analyzed 
in a rigorous way only by applying a different approach that does not use the time 
demand analysis [DGK+02]. Such an alternative approach is based on computing the 
finishing time distribution based on the concept of P-level backlog. The P-level backlog 
observed at time t is defined as the sum of the remaining execution times of all the jobs 
having priorities higher than P that are not completed at time t. 

To find a mathematical formulation of the problem that can be easily solved, the analysis 
must be extended to an hyperperiod: if Bk is the P-level backlog for the lowest priority 
at the beginning of the k t h  hyperperiod, then 

Since task arrivals are periodic, the same arrival pattern is repeated in each hyperperiod, 
hence P { B A  = y B L p 1  = s} does not depend on k.  In other words, the backlog 
process is a Markov chain, and Equation 9.2 can be expressed as 

where bA = ( P I E k  = 0). P{Bk  = 1). . . .)T and JI is amatrix composed by elements 
1 7 1 z ,  = P{BA = y B A - l  =s). 



To derive the elements m,., of the matrix -11, we need to compute the P-level backlog 
at time t' as a function of the P-level backlog at time t .  The PDF of the P-level backlog 
immediately after the release of a higher priority job 7 ,  , (having priority p ,  > P) can 
be computed by convolving the PDF of the P-level backlog with the PDF C ,  ( c )  of 7, 

execution times. If, on the other hand, no job arrives in the interval ( t .  t  '), then the PDF 
of the P-level backlog at time t' can be computed by shifting the PDF of the P-level 
backlog at time t  to the left (t' - t )  units of time and by accumulating in the origin 
all the probability values of the PDF that would be shifted to negative time values. 
Therefore, since the pattern of job arrivals in the hyperperiod is known, the procedure 
shown above can be used to compute the P-level backlog during all the hyperperiod, 
and at the end of the hyperperiod, by computing 171 ,.,. Obviously, the result depends 
on the scheduling algorithm (since jobs priorities depend on the scheduling algorithm). 
Solutions have been proposed for computing -11, both in the fixed priority and dynamic 
priority (EDF) case [DGK+02]. 

If the maximum system load 1, C,/T, is less than or equal to 1 and a RM scheduler 
is used, the computation shown above is equivalent to STDA. If the average system 
load 1, E[C, (c )] /Tz  is less than or equal to 1, then the process bk  = -libkpl has a 
stationary solution; that is, after a transient bk, it converges to a probability distribution 
b : b = -1Ib. This solution can be found either by using an exact computation based on 
some regularity in the matrix J I ,  or by truncating -11 and b to a reasonable dimension 
and by using some numerical technique to solve the resulting eigenvector problem. 
See Section 9.5 for more details about the approximation process. 

Starting from the P-level backlog, it is possible to compute the job-level backlog, 
defined as the backlog due to jobs with priorities higher than or equal to the priority of 
a specified job. Under a fixed priority scheme, the job-level backlog is equal to the P- 
level backlog, where P is the priority of the specified job. Under EDF, the computation 
is a little bit different, but it can still be performed. Since the job-level backlog can be 
used to compute the job response time as j ,  , = r ,  , + c, , + CTA E H  C L  (where 
r ,  , is the job-level backlog of job r ,  , , and H is the set of jobs that may preempt r ,  ,), 
the PDF of the job response time can be obtained by convolving the job-level backlog 
with the PDFs of the execution times of 7, and of the jobs in H. 

The computation of the response time PDF is performed in two stages: in the first 
stage, the convolution C:(c) between C,  (c )  and the PDF of the job-level backlog is 
performed, and, in the second stage, the effects of preemptions from jobs rk 1, E H are 
computed. Since a job rk 1, cannot preempt T,. ,  before rk.h, its effects are computed 
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by splitting L7:(c) in two PDFs, C:/(e) and L7:/'(c). with 

C:/(c) = ( c )  i f c < r k h  
C:/(e) = 0 if c > 7 k.h 

C (e) = 0 if c < 7 k.h 

C '  (e) = L7:(e) if c > 7 k.h 

Then CA (c) is convolved with C:'(c), and C: (c) and C:"(c) are recomposed in a single 
PDF. 

Note that the algorithm described above may seem to be complex and inefficient; 
however, to obtain the deadline miss probability, it is not necessary to compute the 
whole response time PDF, but only the values for c < D ,  are sufficient. 

Finally, it is worth noting that the worst-case assumptions used by STDA (for example, 
the simultaneous arrival of all the tasks) are not used in the backlog-based analysis. 
As a consequence, the results of this kind of analysis are less pessimistic, and better 
approximate the deadline miss probability, as shown by the authors [DGK +02]. How- 
ever, the cost for such an increased accuracy is to perform a complete analysis in the 
whole hyperperiod. 

9.3 REAL-TIME QUEUEING THEORY 

The approach described in the previous section was developed by extending the deter- 
ministic real-time analysis. A completely different approach for analyzing the perfor- 
mance of a probabilistic real-time system is to extend the traditional queueing theory. 
Queueing theory models a system as a queue characterized by an arrhal yr-oces~ and 
a server characterized by a ~ e w i c e  yr-ocea~: 

w clients arrive in the queue with an interarrival distribution V ( t ) ;  

each client is served in a random time distributed as C(e) 

If the server is idle when a new client arrives, then the server immediately starts to 
serve the client and will finish in a time distributed according to L7(c), otherwise the 
client is inserted in a queue. When the server finishes to serve a client, the next client 
is extracted from the queue; if the queue is empty, the server becomes idle. The mean 
number of clients in the queue is indicated by w ,  whereas T,, indicates the mean time a 
client spends in the queue. Similarly, T, indicates the mean time needed by the server 



Figure 9.2 Model of a queue. 

to serve a client, q = ut + 1 indicates the mean number of clients in the system (server 
+ queue), and T, indicates the mean time spent by a client in the system. The model 
described above is illustrated in Figure 9.2. 

The standard queueing theory provides tools for analyzing the statistical properties 
of a system modeled as a queue, under the simplifying assumption that the queueing 
discipline is FIFO [Kle75]. For example, Little's formula ensures that 

Moreover, in the case of Poisson arrivals and exponential service times (the MIMI1 
case), 

Other interesting results can be found on standard queueing theory books [Kle75]. 
Note that the previous formulas are only valid if p < 1 (i.e., if the mean interarrival 
time is greater than the mean service time). If p > 1, the queue will not reach a steady 
state, and its size will increase towards +x, whereas p = 1 is the rneta~fable situation, 
in which nothing can be told about the queue state. 

Classical queueing theory is very useful for analyzing network systems or computer 
systems where clients (packets or tasks) are served in a FIFO (or Round Robin) order, 
but it is not suitable for analyzing real-time schedulers that use different (and more 
complex) algorithms. For this reason, a real-time queueing theory was developed 
by Lehoczky [Leh96] to cope with complex scheduling algorithms and task timing 
constraints. Traditional queueing analysis is fairly simple, because a system (queue 
+ server) can be described by a single state variable, as the number of clients in the 
queue. On the contrary, real-time queueing theory must distinguish the various clients 
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(tasks) to schedule them, and must characterize each task with its deadline. Hence, the 
system state becomes a vector (n?, 1 1 ,  . . . , l,,,), where n? is the number of tasks in the 
queue, and 1 ,  is the lend time of task T,,  defined as d,  - t ,  where d,  is the deadline of 
the current job of task r,, and t is the current time. 

For an M/M/l queue (with X = l /E[T . ' ( t ) ] ,  and p = l / E [ Y ( c ) ] )  scheduled using 
EDF, if (n?, 11. . . . , l m )  is the state at time t ,  the state at time t  + h  (for a small h )  
can be computed as follows. If no jobs arrive and no jobs depart in the time interval 
(t .  t+ h ) ,  then the state evolves in ( i n .  11 - h .  . . . . l,,, - h ) ;  this happens with probability 
1 - ( A  + p ) h  + o ( h ) .  If a job ends during the interval ( t .  t + h ) ,  then the new state 
is (n? - 1,  l 2  - 1 ,  . . . , 1 ,  - 1 2 )  (remember that jobs are assumed to be ordered by 
deadline); this happens with probability pl2 + o ( h ) .  If, instead, a new job arrives with 
leadtimecxin(t.t+h),thenthenewstateis ( r n + l , c x . l l - h  1 - 1 1 ) .  Thisevent 
has probability dG(a)Xh  + o ( h ) ,  where G ( n )  is the CDF of the relative deadlines. In 
a similar way, the state ( 0 )  evolves in ( 0 )  with probability 1 - ( A  + p ) h  + o ( h ) ,  and 
evolves in (1. a )  with probability dG(a)Xh  + o ( h ) .  

Similar computations can be repeated for other scheduling algorithms (such as a pro- 
portional share algorithm, or a fixed priority algorithm), permitting to reconstruct the 
evolution of the system state. Although the previous equations can be used to compute 
a probability distribution of the system state (e.g., the queue length distribution, the 
deadline miss probability, and so on), such a computation is very complex and can- 
not be easily extended to other (non M/M/l) queue models. To simplify the analysis, 
Lehoczky proposed to consider the case of a scheduler under Izea~y f m f i c  conditions. 

The heavy traffic analysis of a queue permits to compute a simple and insightful ap- 
proximation of the complex exact solution, under some simplifying assumptions. In 
particular, when the traffic on a queueing system is high enough (i.e., p  is near enough to 
1). the queue can be described using a simpler model that can be easily analyzed [Dai95]. 
This is similar to the approach taken by the central limit theorem, which approximates 
the sum of a large number of independent random variables with a normal distribution. 

The heavy traffic approximation is based on rescaling the time and the queue length 
in the model, and applying the heavy traffic condition X ,, = X(1 - - /2/;;). pn = X 
(thus, the load is p = 1 - ; / fi). This approach can be taken to analyze the Markov 
process describing the real-time queue presented above. Although the formal analysis 
is fairly complex, the final results are very simple: for example, under EDF, the mean 
queue length turns out to be q  = p / ( l  - p), and the PDF of the lead time results to be 
f ( J )  = X ( l  - G ( s ) ) / q .  

Note that the heavy traffic assumption may seem to be too restrictive, but it is generally 
reasonable, because it covers the case that is interesting for stochastic real-time systems. 



In fact, the deadline miss probability becomes significant when the system is near to 
the full utilization, and hence when it is under heavy traffic. 

Finally, the heavy traffic analysis of a real-time queueing system can also be applied to 
fixed priority schedulers (obtaining an analysis of generalized RM or DM systems), or 
to hard real-time schedulers, in which clients with a negative lead time are automatically 
removed from the queue. This method has also been extended to networks of real-time 
queues [Leh97]. 

9.4 NOVEL ALGORITHMS FOR STOCHASTIC 
SCHEDULING 

Another possible approach for performing a probabilistic guarantee of a real-time 
system is to modify the scheduling algorithm, instead of modifying only the admission 
test. For example, the transform-task method [TDS +95] allows splitting a semiperiodic 
task r, in two s~lbtasks: a periodic subtask 7:. which can be subject to a hard guarantee, 
and a sporadic s~lbtask 7:. 

The periodic subtask 7: has period T,, a well known WCET Cy, and a relative deadline 
D r  = a D , ,  with a, E ( 0 , l ) .  Note that Cy and a, can be chosen during the design 
phase so that the set T P  = { r y }  of the periodic subtasks is schedulable. 

The sporadic subtask r: is used to serve the jobs r, , having c, , > CF, which cannot 
be completely served by the periodic subtask. Hence, a job T:, of the sporadic task 
is released only if c,, > CT, has execution time c:, = c,, - C;, and arrives at 
time r:J = f: when the corresponding periodic job finishes. The sporadic subtask 
execution times are distributed according to the following PDF: 

where A, is the probability ~ { c : ,  > 0 )  of arrival of a sporadic job. Note that C, ( c  + 
C:) must be divided by A, to ensure that CE&,S(~) = 1. 

The sporadic subtasks can be served by using an aperiodic server, such as the Sporadic 
Server [SSL89] (but other service mechanisms can be used as well), or by using a Slack 
Stealer [LRT92, TL921. In the original paper, the authors presented a probabilistic 
guarantee based on RM + Sporadic Server. Using the Sporadic Server, tasks with 
similar periods are "clustered" together; that is, T is partitioned into cliistenr T such 
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that all the sporadic subtasks belonging to a cluster are served by a server with a period 
Pf : VT, E r k ,  Pf < D,; that is, Pf is less than or equal to the minimum relative 
deadlines in the cluster. Moreover, the server budget is set to C i  = C A  /I<, where C A  = 

max, ,,trl {C:} and I< = min,, Er, {LD,/PL]). In this way, if a sporadic subtask 
arrives when the server is idle, then it is served in less than KP;  < min, ,,Er, {D,} ,  
and it will respect its deadline. 

The actual deadline miss probability can be computed by combining (through a con- 
volution) the probability that a sporadic job r:, requires 12 server periods to complete 
with the probability that the backlog in the server queue when T,', arrives requires x  
server periods to be consumed. If H A  ( h )  is the PDF of the number of server periods 
required to serve a sporadic job, and X A  (s) is the PDF of the server backlog found by 
a sporadic job when it arrives, then 

I< x 

P { T ~  F Ti, misses a deadline) = x H ( h )  x X ( x ) .  (9.3) 
l ~ = l  T=I<-h+l 

The distribution H(l2) of the number of server periods needed to serve a job can be 
computed based on the PDFs of the execution times of the tasks belonging to the cluster 
F A  , whereas the Z transform of X ( x )  is given by 

where E [6] is the expected value of the number of server periods needed to serve all the 
requests arriving in a server period. Clearly, if E [6]  > 1, the server queue will explode, 
because the amount of time to be served in a server period is bigger than the amount of 
time the server can serve in period. Hence, if E[6] > 1, a stationary distribution X ( x )  
cannot be found; note that E[6] is similar to the load p of a queue. More details can be 
found on the original paper [TDS+95]. 

An alternative approach is to serve the periodic subtasks with an EDF scheduler, and 
a to use a Slack Stealer for serving the sporadic subtasks. The advantage of this 
second methodology is that tasks response times are expected to improve. However, 
no stochastic analysis of the EDF + Slack Stealer case has been performed, because of 
the difficulty of modeling the Slack Stealer behavior. 

The two task transformation approaches presented above have been compared through 
a set of simulations [TDS+95], showing that EDF + Slack Stealer provides better 
response times than RM + Sporadic Server. However, RM + Sporadic Server gives 
more control on the deadline miss probability: there are tasks that when scheduled 
by RM + Sporadic Server have a larger average response time, but a lower deadline 



miss probability (that is to say, the response time probability is concentrated on values 
smaller than the relative deadline). 

A different approach has been proposed by the Statistical Rate Monotonic (SRMS) 
algorithm [AB98c], which provides a firm guarantee by accepting or rejecting each job 
on its arrival: if a job is accepted, it is guaranteed to respect its deadline, otherwise 
it does not even start executing. Moreover, a per task guarantee is performed on task 
creation, to guarantee a deadline miss probability for the task. 

SRMS is based on a variation of the semiperiodic task model, in which each task r ,  
is described by three parameters ( C ,  (c). T,. 6,) ,  where 6, = P{ f ,  , > d l  ,} is the 
deadline miss probability requested by the task (in the original paper, it is called task's 
r e p a f e d  QoS). On task arrival, the system runs an admission test, checking whether 
a deadline miss probability equal to 6, can be guaranteed to 7 , .  If the test does not 
fail, the task is accepted. Once 7, is accepted in the system, each arriving job r, , is 
guaranteed to be accepted with a probability 6 , .  Such a stochastic guarantee is achieved 
by SRMS through two different mechanisms: accoilnfing of the time consumed by r ,, 
and aggregafion of consecutive jobs T,. ,  . r, ,+I .  . . .. This method can be used only if 
the execution time el . ,  of job r, , is known at the job arrival time. 

To perform execution time accounting, SRMS associates a budget (the maximum bud- 
get is called a l l o ~ t ~ a r ~ e  in the original paper) to each task: as in a reservation based 
algorithm, the budget is periodically replenished every PP L ~ S  of time (Pt  is referred 
as silperperiocl) and is decreased when a job r,.,  executes. However, since SRMS is 
a firm algorithm, the budget can be immediately decreased when a job arrives, and 
can be used to accept or reject a job, as will be shown later. In the original paper, the 
superperiod of task r, is defined to be equal to the period of the next lower priority 
task 7,+1. 

More formally, SRMS works as follows: 

w at the beginning of each superperiod, the budget q ,  of task r, is replenished to its 
allowance; 

when a job 7, , requiring an execution time c, , arrives at time r ,  , , it is accepted 

if c,., < q,  and c, , < TI - Qi T,/PL. If 7, , is accepted, q, is decreased 
by c, ,. 

accepted jobs are scheduled according to RM. 

Note that the first condition for admitting a job (c ,  , < q,) ensures that each task 7, will 
never consume more than its allowance in a superperiod, whereas the second condition 
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Figure 9.3 Since the task supelperiod P: is an intege~ multiple of the task peliod T,, it is 
di\icled into m = P,'/T, phases 

( G ,  < T, - x;~: Q;T,/P;) guarantees that an admitted job will finish within its 
deadline, because the d~fference between the budget and the maximum amount of time 
required by high priority tasks is greater than the job execution time. 

The task's admission control used to guarantee that each task will receive the desired 
QoS (that is, that a job 7, , will be rejected with a probability not greater than 1 - 6,)  is 
performed in two steps: a first test guarantees that each task r ,  will receiveits allowance 
Q: in its superperiod; then, a second test verifies whether the pair (Q k .  P,') is enough 
for guaranteeing 6,. As for a traditional reservation algorithm, each task is guaranteed 

s < c l u b  to receive Qf units of time every P: if C:=, QYP, . Note that c'"" 1, 
because the analysis is performed under the assumption that periods are harmonic. 
Also, P15 is set to be equal to T,+l. As a result, the first part of the admission control is 

If this condition is verified, each task r, is automatically guaranteed to receive its al- 
lowance, hence for harmonic task sets the probability of rejecting a job can be computed 
by considering only the first of the two job admission conditions. 

Since the task set is harmonic, the superperiod will be an integer multiple of T,, 
and 171 = T,+l/T, jobs 7, , . . . . , 7,.,+,-1 will be released in a superperiod, dividing 
it into 171 phases, as illustrated in Figure 9.3. A job arriving in the first phase of a 
superperiod always finds a budget q ,  = Q:, and will be accepted if c, , < Q:. Hence, 
if T ,  is the probability to accept a job r ,  , arriving in the kt" phase, 

The probability T ,  2 to accept a job r , ,  arriving in the second phase is given by the 
sum of two terms, considering the two cases in which the job arriving in the first phase 



was accepted or rejected: 

since c, , and c, ,-I have the same PDF (because jobs are supposed to be independent), 
P{c, , +c, ,-I < Qi} = P{2c,, < Qi}, and the probability can be easily computed. 
The other probabilities T ,  A : 0 < k < T,+l/T, can be computed in a similar way, 
by considering all the possible histories of the task inside the first k phases, and by 
expressing x, A as a sum of 2 k p 1  terms. 

If the jobs are uniformly distributed in the various phases, the probability 6 ,  to accept 
a job 7, , is 

If the task periods are not harmonic, the complexity of the analysis increases, because 
there are situations in which a job released in a superperiod can have its deadline in the 
next superperiod. This case can be addressed in three different ways: 

1. admitting the job based on the current budget (the budget of the superperiod in 
which the job arrives); 

2. admitting the job based on the budget in the next superperiod (the superperiod in 
which the job deadline is). In this case, the job execution must be delayed until 
the next superperiod, or until all the lower priority tasks are inactive; 

3. splitting the job in two sub-jobs, guaranteeing the first one in the current superpe- 
riod, and the second one in the next superperiod. 

These possible solutions have been considered in a separate paper [AB98b], and the 
analysis is omitted here for the sake of simplicity. Note that in this case the second job 
admission rule has to be considered too. 

Quality-Assuring Scheduling [HLR+Ol] uses a technique similar to Task Transfor- 
mation to perform a stochastic guarantee of tasks composed by mandatory parts and 
optional parts (this task model is similar to the imprecise computationmodel [LLN87]). 
More specifically, every job r, , consists of a r1zandafot2 yarf 7:: and o, optional parts 

0 
T, , . . . .TZ ., . The mandatory part is released periodically with a period T , ,  is ex- 
ecuted before all the optional parts, and must be completed within the job deadline 
d l ,  = r, , + T,. Optional parts are sequentially released (that is, r z  k+l  starts when 
T: A finishes) after the end of 7,'; and can miss the job deadline; if the optional part 
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r z  misses the deadline, then all the successive optional parts r,.,  k+, ,  . . . of the 
current job are skipped. 

In Quality-Assuring Scheduling, each task 7 ,  = (iY:'(c). (c) .  o,. q,. T,) is de- 
scribed by the PDF L,"(c) of the mandatory part execution time, the PDF ~ : ( c )  
of the optional parts execution times, the number of optional parts o , . the fraction q ,  of 
optional parts that must finish within their deadline to respect the task's QoS require- 
ments, and the task period T,. The worst-case execution time C ,  of themandatory parts 
is implicitly described by ~ ; \ ' ( c ) ,  since C,  = mns{c : CIZ'(c) > 0 } ,  by definition. 

Tasks are scheduled according to a reservation approach, by reserving a time C ,  to the 
mandatory part of task r,. and a time Q? to the optional parts of r, .  All the optional 
parts are scheduled in background respect to the mandatory parts of each task, and a 
reservation ( Q y .  T,) is used for serving them. Clearly, all the mandatory parts will 
respect their deadlines if 1, C, IT, < Club. 

One of the most interesting characteristics of Quality-Assuring Scheduling is that it is 
one of the few algorithms that have been also applied to resources other than the CPU, 
such as a SCSI disk. When applying the algorithm to disk scheduling, all the tasks 
happen to have the same period, and the scheduled resource is non-preemptable. If all 
tasks have the same period T, all the mandatory parts can be scheduled at the same 
priority (higher than all the priorities of the optional parts), and the admission test for 
the mandatory parts is C z  C, < T .  Without any loss of generality, tasks can be ordered 
according to the optional parts' priorities, hence 7 1  is the task with the highest priority 
optional parts, and the first optional part 710, , of rl starts executing immediately after 
the mandatory parts r;', , . . . . r-" n J '  

To guarantee that a task r ,  will respect its QoS parameter q,  (i.e., that it will complete 
at least a fraction q,  of its optional parts), the fraction q ,  of completed optional parts 
can be computed as q,  = E[A,]/o, ,  where A, is a random variable indicating the 
number of optional parts of task r ,  completed in a period (note that since the scheduler 
is non-preemptable, this is equal to the number of optional parts that can be started in 
a period). By definition, 

and. since P{A, > o, + 1) = 0, we have: 

E[AJ = C P { A ,  > k ) .  



Mandatory parts Optional parts 

Figure 9.4 Number of optional parts schecluled for the fitst task 

The PDFs P{A,  = k )  of the number of completed optional parts are computed starting 
from task 7 1 :  if X is a random variable given by the sum of the execution times 
e l , .  . . , c,, of the mandatory parts, then P { A 1  = k }  can be computed by finding the 
probability that X leaves enough free time for k  optional parts in a period, and that the 
time Q y  reserved for optional parts is enough (see Figure 9.4). This computation can 
be easily performed because P{X = s) can be obtained by convolving the c,"(c) 
PDFs. 

Once P { A 1  = k }  is known, it is possible to obtain the PDF of the time consumed by 
the optional parts of 71. Note that since the scheduled resource is non preemptable the 
optional parts can consume more than Q F, as shown in Figure 9.4. Such a distribution 
~ { k c y  = y)  is obtained by convolving ~ ? ( c )  with itself k  - 1 times, and then 
convolved it with the PDF of X, obtaining the PDF of a new variable X ', that can be 
used to compute P { A L  = k }  (that is, the distribution of the number of optional parts 
started for task r2). In fact, the probability P{A2 = k )  is computed by repeating the 
process used for computing P{A1 = k ) ,  but using X' instead of X .  This process can 
be iterated to obtain the probability for all the other tasks. 

Since all the tasks have the same period T, the RM assignment does not give any 
usefill hints in deriving tasks' priorities. The authors propose a priority assignment 
called Quality Monotonic Scheduling (QMS), that assigns higher priorities to tasks 
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with a higher quality parameter q ,  (remember that mandatory parts always have higher 
priorities than optional parts). 

The proposed analysis can be extended to preemptable resources by changing the way 
in which X' is computed (see the original paper [HLR+01] for all the details). 

When considering arbitrary periods, the admission test for mandatory parts ( C, < 
T )  must be changed: if periods are harmonic, c ' " ~  is still 1, and the test is C,  C,/T, < 
1. After passing this admission test, the optional parts can be guaranteed as shown 
above. If periods are not harmonic, an exact schedulability test (based on response time 
analysis or on time demand analysis) should be used, although the authors analyzed 
the behavior of the algorithm by simulation. 

As a final consideration, it is worth noting that all the modifications proposed to the 
traditional scheduling algorithms for controlling the deadline miss probability (i.e., 
the Task Transformation method, SRMS, and Quality-Assuring Scheduling) tend to 
implement some kind of temporal protection among tasks (see also Chapter 3). This 
fact seems to suggest that temporal protection is helpfill to simplify the probabilistic 
analysis of a real-time system: for this reason, a stochastic guarantee of reservation 
based schedulers is presented in the next section. 

9.5 RESERVATIONS AND STOCHASTIC GUARANTEE 

One of the advantages of using a reservation-based scheduling approach such as the 
CBS, is that the scheduling parameters (Qf . P,") can be separated from the task char- 
acteristics (such as execution and interarrival times). In this way, if task 7, is described 
by a pair of PDFs of the execution and interarrival times, then it is possible to perform a 
probabilistic guarantee, as defined in the previous sections. For example, a reservation 
system can be analyzed by modeling each task as a queue to perform a probabilistic 
guarantee [AB99b, ABOlb, AB041. This model works as follows: 

I .  each P,' units of time, Q:  units of time can be served; 

2. the arrival of job r,., corresponds to a request of c ,  , units of time entering the 
queue. 

This model is similar to the one used by the Task Transformationmethod to analyze the 
sporadic subtasks, with the difference that here each task has its own queue. Having 
per-task queues also simplifies the analysis with respect to the real-time queueing 



theory: in fact, since all the jobs of a single task are served in a FIFO order, there is no 
need to model the scheduler behavior in the queue. 

The evolution of a reservation is described by a random process x, (indicating the 
amount of execution time that "has accumulated" in the queue immediately after the 
beginning of a reservation period, or immediately after a job arrival). Hence, it is 
possible to compute the probability distribution of s,, and to derive the deadline miss 
probability from it. 

To perform a stochastic analysis of a generic reservation-based scheduling algorithm, 
the simplified case in which r ,  ,+I - ?-, , is a multiple of P,' is considered first, and 
the analysis is then extended to cope with generic interarrival times. Hence, a new 
property is added to the previously described model: 

3. when a job arrives, the next request of c,+l units will arrive after ?-, ,+I - ?-, , = 

z, , P;' units of time 

Since execution and interarrival times are random variables described by the PDFs 
K(c) and I; ( t ) ,  the amount of execution t imes  that still has to be served immediately 

after a job arrival is a random variable too, described by a PDF T!'") = P{s, , = k}. 

Being Qf time units served every period P,". job r, , will finish before time 

hence the probability nf J' that the queue length J,., is k ,  immediately after a job 
arrival, is a lower bound of the probability P{ f ,  , - ?-, , < 6,) that the job finishes 
before the probabilistic deadline 

Being the interarrival times multiple of the server period P;', it is possible to define 
T.</(z) = P{r,., - r ,  ,-I = zP;') as the probability that the interarrival time between 
two consecutive jobs is zP,". Hence, 

V ( t )  = 
z f  t m o d P s # O  

otherwise. 
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Note that, since c, , and r, ,+1 - r, , are time invariant, L,(c) and I;/(;) do not depend 

on j. Under these assumptions, it is possible to compute 7ii' as follows: 

Being s , . ,  and z, , greater than 0, by definition, the sums can be computed for 12 and 
z going from 0 to infinity: 

Hence, 

with 

Considering 1nL A as an element of a matrix LII'. xj' "' can be computed by solving the 
equation 

nil J )  = Alpn(z J-1) (9.7) 



where 

9.5.1 STABILITY CONSIDERATIONS 

As already stated in Section 9.3, it is known that a generic queue is stable (i.e., the 
number of elements in the queue do not diverge to infinity) if 

Hence, the stability can be achieved under the condition 

where E[Cz] is the execution time expectation and E[T,]  is the interarrival time expec- 
tation. 

If this condition is not satisfied, then the difference f ,  , - r,  , between the finishing 
time f , ,  and the arrival time r ,  , of each job 7, , of task 7, will increase indefinitely, 
diverging to infinity as j increases: 

This means that, for preserving the schedulability of the other tasks, 7 ,  will slow down 
in an unpredictable manner. 

If a queue is stable, a stationary solution of the Markov chain describing the queue can 
be found; that is, there exists a finite solution 111 such that IIz = lim,,, II(' J ) .  Since 
IIcl 1) = A \ ~ l I I ( l  j - l ) ,  we can compute II  as follows: 
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Hence, II' can be computed by solving the eigenvector problem 

This solution can be approximated by truncating the infinite dimension matrix JI ' to an 
nxn  matrix -2' and solving the eigenvectorproblem rll = AZ?'rlz with somenumerical 
calculus technique. 

9.5.2 RELAXING THE HYPOTHESIS ON 
INTERARRIVAL TIMES 

In the previous analysis, task interarrival times are assumed to be multiple of an integer 
value P,'. so that Equation (9.5) is verified. This assumption is very useful to simplify 
the queue analysis, but can be unrealistic in practical situations. 

Using some appropriate approximations, it is possible to relax the assumption on the 
interarrival times without compromising the analysis based on it. When Equation (9.5) 
is not respected, it is convenient to introduce a new distribution T/; ( t )  that approximates 
L:(t) for enabling the previously developed analysis. In this way, it is possible to 
analyze the task behavior based on the approximate PDF I:, ( t )  instead of the actual 
PDF I; ( t) .  In order for this approximation to be correct, I:, ( t )  must 

w be conservative (pessimistic); 

w verify Equation (9.5). 

Being "conservative" means that i f a  ylnbabilirtic deadlirte cart be guaranteed iisirtg 
I:, (t), i f  i~ guara-anfeed also according to fhe real di~frihrtiorl I; ( t) .  Since the opposite 
is not true, this approach is pessimistic. 

The new PDF T/; ( t )  is conservative if 

while the second requirement states that 

0 z f  t rnodP:#O 
r/;(t) = otherwise. 



Figure 9.5 Conser\ati\e app~oui~nation of a CDF 

Equation (9.8) states that the approximated interarrival times CDF lf; ( t )  computed 
from I; ( t )  must be greater than or equal to the interarrival times CDF 11, ( t )  computed 
from I; ( t )  (recall that the CDF of a stochastic variable expresses the probability that 
the variable is less than or equal to a given value). 

In practice, the intuitive interpretation of Equation (9.8) is that T/; ( t )  is conservative if 
the probability that the interarrival time is smaller than t  according to I;; ( t )  is bigger 
than according to LT1 ( t ) .  This concept is explained in Figure 9.5. 

Given a generic PDF 1: ( t ) ,  it is possible to generate a conservative approximation T/, ( t )  
if 3k  : t  < k + I ; ( t )  = 0. In this case, it is possible to set P,i < k and to compute 

It can easily be verified that, if I;; ( t )  is computed according to Equation (9.9), then it 
will have both the required properties. 
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